
$\rightarrow$

## ROLLWAL

 BEARING

## TABLE OF CONTENTS

Radial Roller Bearings

1. Radial Roller Bearing Overview ..... Page 4 \& 5
2. Configurations \& Numbering System ..... Page 6 thru 9
3. Retainer Selection ..... Page 10
4. Series Code \& Race and Roller Material ..... Page 11
5. Technical
A. Class of Precision ..... Page 12
B. Basics of Load Ratings and Bearing Selection Criteria ..... Page 12
C. Limiting Speed ..... Page 12
D. Limiting Speed Graph ..... Page 13
6. Product Data ..... Page 14 thru 27
7. Applications ..... Page 28 \& 29
Thrust Bearings
8. Thrust Bearing Overview ..... Page 30 \& 31
9. Cylindrical Thrust
A. Types ..... Page 32 thru 34
B. Numbering System ..... Page 35
C. Product Data Page 36 thru 40
10. Tapered Thrust
A. Types ..... Page 41 \& 42
B. Numbering System ..... Page 43
C. Product Data ..... Page 44 \& 45
11. Tandem Thrust
Page 46 \& 47
A. DesignsPage 48 thru 50
12. Special Designs ..... Page 51
13. Applications ..... Page 52 thru 55
Journal Bearings
14. Journal Bearing Overview ..... Page 57
15. Product Data ..... Page 58 \& 59
Engineering
16. Table of Contents ..... 60
17. Gaging Practices ..... Page 61 \& 62
18. Tolerances
A. Radial Bearings, RBEC 1, 3 \& 5 ..... Page 63 \& 64
B. Journal Bearings ..... Page 64
C. Thrust Bearings ..... Page 65 thru 67
19. Life-Load - Speed ..... Page 68 thru 72
20. Fitting Practice
A. Radial Bearing Unmounted Internal ClearancePage 72 thru 75
B. Radial Bearing Mounting Practice - Shaft and Housing Fits ..... Page 76 thru 78
C. Thrust Bearing Mounting Practice - Shaft and Housing Fits ..... Page 79 thru 81
D. Journal Bearing - Shaft and Housing Fits ..... Page 82
21. Lubrication ..... Page 83 thru 87

## Bearings <br> For Demanding Applications...



## ROLLWAY ${ }^{\circledR}$ Cylindrical Radial Roller Bearings...

Catalog sizes and engineered to order bearing designs readily available.

- RBEC 5 Precision Class Capability.
- Extra Capacity Designs.
- Multiple Retainer Designs Available.
- High Temperature Designs Available.
- Special Features...
- Notches.
- Slots.
- Aligning Features.
- Carburizing Grade Materials.


## ROLLWAY ${ }^{\text {® }}$

## Roller Thrust Bearings...

Catalog sizes and engineered to order bearing designs readily available.

- Cylindrical Roller Designs - Catalog and Engineered.
- Aligning, Banded and Double Acting Designs Available.
- Tapered Roller Designs - TTHD \& TTVF.
- Cantilever Designs for Minimal Shoulder Support.
- Tandem Thrust 2-8 Stage Designs.
- High Temperature Designs Available.
- High Speed Designs Available.



## Engineered Bearings For Your Applications

## $R_{\text {rollwal ramal rourb bannus }}$

## INDEX - BEARING TYPES

## Radial Roller Bearings

$\qquad$ Pages 4 thru 29


Cylindrical Thrust Bearings ....... Pages 30 thru 40


Tapered Thrust Bearings $\qquad$ Pages 41 thru 45


T-\#\#\#


T-\#\#\#\#\#\#-F

Tandem Thrust Bearings............ Pages 46 thru 51


TAB-\#\#\#\#\#\#
TMB-\#\#\#\#\#\#


TAC-\#\#\#\#\#\# TMC-\#\#\#\#\#\#


TAD-\#\#\#\#\#\# TMD-\#\#\#\#\#\#


TAF-\#\#\#\#\#\# TMF-\#\#\#\#\#\#


TAH-\#\#\#\#\#\# TMH-\#\#\#\#\#\#

## Journal Roller Bearings

## Pages 57 thru 59



D-\#\#\#



B-\#\#\#-70


WS-\#\#\#


E-\#\#\#-60

# $\boldsymbol{R}_{\text {rollway }}$ Radial Roller Bearings... 

Since 1908 ROLLWAY Bearing produced high quality, engineered cylindrical radial roller bearings. There are hundreds of standard designs available as well as the capability to engineer bearings to satisfy your demanding applications...


## In The Past We Have Solved Some of The Most Demanding Bearing Challenges:

- High speed bearings for aerospace transmissions.
- High temperature bearing designs for Poly-reactor and corrugating equipment.
- Designs for applications using low viscosity lubricants.
- Designs for vibratory and orbiting applications.
- Designs requiring anti-rotation features on the races.
- Bearings with outside diameters of 42 ".

Besides providing solutions to industry's toughest bearing applications, ROLLWAY bearings are manufactured in many standard catalog sizes and styles:

- Multiple configurations per basic size.
- Many different series available.
- Steel and Brass retainer options.
- Extra Capacity Designs.


## ROLLWAY Standard Designs

Unmounted Internal Clearances - Rollway's standard is C3, though other unmounted internal clearances are readily available.

## Standard Retainer

 options include segmented steel or machined brass.Races - manufactured from Vacuum Degassed through Hardened Bearing Grade Steel. Surfaces are precision ground to RBEC 1 and stabilized to $335^{\circ} \mathrm{F}$.

All Radial Rollers are crowned. Extra capacity bearing designs have larger rollers, maximizing the load carrying potential of the bearing's cross sectional area.

ROLLWAY ${ }^{\circledR}$ Cylindrical Radial Roller Bearings are available in a vast variety of sizes and configurations ranging from standard cataloged 45 mm ID bearings to 1,016mm outside diameter special engineered bearings. This section of the catalog covers ROLLWAY Cylindrical Radial Roller bearing configurations, part numbering, material, retainer design and limiting speeds.

Inner Race Separable, Both Directions


Number Systems
E-\#\#\#\#-U
E-\#\#\#\#-B
MUC-\#\#\#\#
NU-\#\#\#

Two-flange (or retaining rings) outer race, straight inner race, separable bearing. For applications where axial float in both directions is desired. Roller assembly remains with the outer race.

Two Piece Inner Race, Four Flange Design


Number Systems
LP-\#\#\#\#-U
MU-\#\#\#\#
NUP-\#\#\#

Two-flange outer race, two-flange inner race with one flange plate, separable bearing. For applications where axial retention in both directions is desired. Roller assembly remains with the outer race. Will carry light thrust loads in both axial directions.

Outer Race Separable One Direction


Number Systems
U-\#\#\#\#-L
ML-\#\#\#\#

One-flange outer race, two-flange inner race, separable bearing. For applications where axial float in one direction and axial retention in the other directions is desired. Roller assembly remains with the inner race. Will carry light thrust loads in one direction.

Straight outer race, two-flange inner race, separable bearing. For applications where axial float is desired. Roller assembly remains with the inner race.

Two Piece Outer Race Four Flange Design


Two-flange outer race with one flange plate, two-flange inner race, separable bearing. For applications where axial retention in both directions is desired. Roller assembly remains with the inner race. Will carry light thrust loads in both axial directions.

Non-Separable


Two snap-ring flange outer race, two-flange inner race, non-separable bearing. No axial retainer of outer race is required when inner race is properly mounted on shaft. See application drawings. Will not carry thrust loads.

## ROLLWAY Numbering Systems...

Over the years the ROLLWAY product offering has increased. Each new product line has its own numbering system resulting in the current offering of multiple nomenclatures. The three basic systems are TRU-ROL, MAX and ISO, described below and on the following two pages.

## TRU-ROL Numbering

This system for radial bearings is broken into 4 parts; Prefix, Size Designator, Suffix and Variation code. Example:

## E-1212-U-199



## PREFIX - Inner race description

E........... Inner race separable both directions.

L ........... Inner race separable one direction.
LP......... Two piece inner race, one part is separable one direction, the other is a thrust plate to form a channeled race assembly.
U...........Inner race with two flanges, non-separable.

UM........ Inner race with two flanges, non-separable, full complement of rollers.
NONE ... No inner race supplied.

## SIZE DESIGNATOR

Available Series; 1000, 1200, 1300, 5200, 5300 and 6200.

## SUFFIX - Outer race description

E (EMR) ....... Outer race separable both directions.
L (LMR) ......... Outer race separable one direction.
LP (LPMR) ... Two piece outer race, one part is separable one direction, the other a thrust plate to form a channeled race assembly.
U (UMR) ....... Outer race with two flanges, non-separable.
B.................. Outer race with two snap rings to retain the roller set, non-separable.
J................... Outer race with one snap ring and one flange to retain the roller set, non-separable.

VARIATION CODES - Variation codes are divided into two categories; Special and Standard.
Special variation codes...
101 to 129 are numerically assigned codes that designate the variation from standard (example $101=1$ st variation, $102=2 n d$ variation, etc.). These bearing code numbers do not in any way reference the modification from standard. Engineering must be contacted for information concerning a particular modification.
Standard variation codes...
001 to 099 \& 130 to 199 are code numbers representing standard modifications. The most popular are listed below:

- K - Over sized OD.
- 003 - Rollway internal clearance Class 3.
- 005 - Rollway internal clearance Class 5.
- 007 - Rollway internal clearance Class 7.
- 019 - Outer race with SAE ring groove around OD.
- 027 - Outer race with blind hole or locating slot in outer race.
- 191 - Broached retainer.
- 199 - Bearing with SAE ring groove on OD and snap ring furnished.


## MAX Numbering

This system for radial bearings is broken into 3 parts; Prefix, Size Designator and Variation code. Example:


## PREFIX - Bearing configuration description

ML ........ Bearing assembly with roller assembly retained in inner race, outer race separable one direction.
MCS ..... Bearing assembly with roller assembly retained in inner race, outer race separable both directions.
MN........Bearing assembly with roller assembly retained in inner race. Two piece outer race, one part is separable one direction, the other is a thrust plate to form a channel race.
MS ........ Bearing assembly with roller assembly retained in inner race. Outer race with two snap rings to retain the roller set, non-separable.
M .......... Bearing assembly with roller assembly retained in inner race. Outer race with two snap rings to retain the roller set, non-separable with a full complement of rollers.
MUC ..... Bearing assembly with inner race separable both directions. Roller assembly retained in outer race.
MUL ..... Bearing assembly with inner race separable one direction. Roller assembly retained in outer race.
MU........ Bearing with a two piece inner race, one part is separable one direction, the other is a thrust plate to form a channeled race. Outer race retains the roller assembly.
MR $\qquad$ Bearing with a two piece inner race, one part is separable one direction, the other is an HJ ring to form a channel race. Outer race retains the roller assembly.

## SIZE DESIGNATOR

Available Series; 100, 200, 300, 5000 and 5100.
VARIATION CODES - Variation codes are divided into two categories; Special and Standard.

## Special variation codes...

101 to 199 are numerically assigned codes that designate the numerical variation from standard (example $101=1$ st variation, $102=2 n d$ variation, etc.). These bearing code numbers do not in any way reference the modification from standard. Engineering must be contacted for information concerning a particular modification.

## Standard variation codes...

001 to 099 are code numbers representing standard modifications. The most popular are listed below:

- 003 - Rollway internal clearance Class 3.
- 005 - Rollway internal clearance Class 5.
- 007 - Rollway internal clearance Class 7.


## CONFIGURATION \& NUMBERING SYSTEM

ISO Numbering
This system for radial bearings is broken into 3 parts; Prefix, Size Designator and Variation code. Example:

NU-320-EMC3


## PREFIX - Bearing configuration description

NU ........ Bearing assembly with inner race separable both directions. Roller assembly retained in outer race.
NUP ...... Bearing with a two piece inner race, one part is separable one direction, the other is a thrust plate to form a channeled race. Outer race retains the roller assembly.
NJ......... Bearing assembly with inner race separable one direction. Roller assembly retained in outer race.
N...........Bearing assembly with roller assembly retained in inner race. Outer race separable both directions.

## SIZE DESIGNATOR

Available Series; 200, 300, 2200 and 2300.
VARIATION CODES - Variation codes are divided into two categories; Special and Standard.

## Special variation codes...

VAA begins an alpha code assigned to designate the variation from standard (example VAA $=1$ st variation, VAB $=$ 2 nd variation, etc.). These bearing codes do not in any way reference the modification from standard. Engineering must be contacted for information concerning a particular modification.
Standard variation codes...
Are code numbers representing standard modifications. The most popular are listed below:

- E - Extra capacity design.
- M - Machined brass retainer.
-C2 - ABMA internal clearance symbol 2.
- C3 - ABMA internal clearance symbol 3.
-C4 - ABMA internal clearance symbol 4.
- S1 - Bearing is stabilized for operation at $390^{\circ} \mathrm{F}$. RADIAL ROLLER BEARINGS

RETAINER MATERIAL AND CONSTRUCTION

## Stamped Steel Retainer...

A one-piece, low carbon steel stamping. Supplied on some bearings with snap ring detention.
(TRU-ROL numbering suffix of " B ")
Recommended for low speed operations.


## Two-Piece Retainer...

This type of retainer is fabricated from brass. This is the standard retainer supplied with ROLLWAY bearings identified with the MAX numbering system, ISO numbering system, TRU-ROL numbering system when the "MR" suffix is used, and any bearing with bore size over 180 mm . Recommended for moderate to high speed applications.



## Segmented Steel Retainer...

A built-up type of retainer utilizing low carbon steel segments rigidly held between stamped, low carbon steel end plates. This is the standard retainer supplied with commercial bearings identified with the TRU-ROL numbering system. Recommended for moderate speed applications.


## One Piece Retainer...

This land piloting retainer is fabricated from brass or steel with radial retention of the rollers provided by closing the roller "pocket" with small projections formed by mechanically upsetting the retainer material. This retainer design is typically made to order for high speed applications, though it is applicable for other applications.

## SERIES CODE \& RACE AND ROLLER MATERIAL

## Radial Roller Bearing Series Codes...

The ABMA has established standard design criteria for radial roller bearings. It has defined standard series for the roller bearings by identifying the outside diameter and width for a given bore diameter. The illustration below demonstrates the differences in cross section for the given series.

## ROLLWAY SERIES CODES



## Race and Roller Material...

The races and rollers in standard ROLLWAY bearings are made of vacuum-degassed, high alloy, through-hardened and/or case-carburized steels that are stabilized for operation up to $250^{\circ} \mathrm{F}$ for case-carburized steel and $335^{\circ} \mathrm{F}$ for through hardened steels. For operating temperatures in excess of $335^{\circ} \mathrm{F}$, special materials and/or stabilization procedures are necessary.

Vacuum-degassed steels are used in standard bearings; however, consumable-electrode remelted steels (from either air CEVM or vacuum-melted electrodes VIMVAR) are available in all alloys and will be supplied upon request.

We also has the capability to manufacture in low quantity any bearing design with $\mathrm{M}-50$ tool steel for applications requiring high temperature hardness, and average operating temperatures over $400^{\circ} \mathrm{F}$ but less than $800^{\circ} \mathrm{F}$.

## Class of Precision...

Standard catalog radial roller bearings are manufactured to the ABMA RBEC-1 tolerance class. Many applications may require greater precision than standard because of high rotational speeds or other exacting requirements. Bearings manufactured to either RBEC-3, RBEC-5 or special tolerance classes are also available upon request.

## Tolerance limits for the three RBEC classes are given in the Engineering section.

## Basics of Load Ratings and Bearing Selection Criteria...

The Engineering Data section of this catalog provides information useful to the designer for the proper sizing and configuration of bearings, and the means for predicting expected life under specific application conditions. The capacities in the following sections have been calculated in accordance with the ABMA standards.

All ROLLWAY bearings are made with crowned rollers which satisfy the general requirements for modified-line contact, in accordance with ABMA definitions.
The ROLLWAY crowning technique is a highly developed technology including analytical, experimental, processing and quality control techniques to ensure the following:

1. Freedom from end effects and stress concentrations under design load conditions.
2. Detailed understanding and the necessary controls for demanding applications where reliability and higher theoretical capacities are essential.
The control of crown modifications has long been taken for granted as a qualitative feature of rolling contact bearings but here, it is a highly developed capability by which optimum quantitative results are produced in the actual application.
In the following sections, specific reference is made to the recognition and accommodation of misalignment. Also provided are detailed methods for determining the life improvement due to modern materials and processing, as well as life limitation due to application designs and operating conditions.

## Limiting Speed...

The limiting speed of a roller bearing is the rotational speed at which it may be operated based on geometry, retainer construction, lubricant and lubrication method without incurring a temperature rise within the bearing which would cause lubricant breakdown, softening of components or seizure. The criterion used is the $d n$ value where $d$ equals the bearing bore diameter ( mm ) and $n$ equals the bearing rotation speed (rpm).
The graph on page 13 provides the suggested safe limiting speeds for cylindrical radial roller bearings with various types of retainer construction based on recirculating oil lubrication with a lubricant of adequate viscosity.
In the selection of a retainer design for obtaining the highest practical roller bearing operating speed, it is often necessary to consider other factors than speed alone. For example, a two-piece drilled retainer might be selected over a segmented retainer where the torsional loading on the retainer is severe even though the segmented type appears adequate with respect to speed.
It should be noted that suggested limiting speeds are given graphically for the standard roller-riding retainers (segmented, two-piece drilled and window-type stamped steel) and one-piece broached and piloting retainers. Special retainer designs for each of these types permit higher operating speeds and are available upon request.
When using the graph, these guidelines should be followed:

1. For grease lubricant applications, use $80 \%$ of the suggested limiting speed.
2. For air-oil mist lubricant applications, use $150 \%$ of the suggested limiting speed.
3. For fixed volume of non-recirculated oil, use $85 \%$ of the suggested limiting speed.
4. For double width and multi-row designs, use $67 \%$ of the suggested limiting speed.

LIMITING SPEED GRAPH
TECHNICAL



| BORE |  | OUTSIDE <br> DIAMETER |  | WIDTH |  | RADIUS |  | BASIC DYNAMIC CAPACITY | BASIC STATIC CAPACITY | $\begin{gathered} \hline \text { FLANGE } \\ \text { O.D. } \\ \text { INNER } \\ \text { RACE } \end{gathered}$ | O.D. INNER RACE | $\begin{gathered} \hline \text { FLANGE } \\ \text { I.D. } \\ \text { OUTER } \\ \text { RACE } \end{gathered}$ | I.D. OUTER <br> RACE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B |  | D |  | W |  | rs | rh | POUNDS | POUNDS | Fi | Ri | Fo | Ro |
| MM | INCH | MM | INCH | MM | INCH | MM |  |  |  | MM |  |  |  |
| 30 | 1.1811 | 62 | 2.4409 | 16.0 | 0.6299 | 1.0 | 1.0 | 7,130 | 6,920 | 41.3 | 38.0 | 51.2 | 54.0 |
|  | 1.1811 | 62 | 2.4409 | 23.8 | 0.9375 | 1.0 | 1.0 | 10,610 | 11,530 | 41.3 | 38.0 | 51.2 | 54.0 |
|  | 1.1811 | 72 | 2.8346 | 19.0 | 0.7480 | 1.5 | 1.0 | 9,930 | 9,510 | 44.6 | 40.7 | 56.9 | 60.4 |
|  | 1.1881 | 72 | 2.8346 | 30.2 | 1.1875 | 1.5 | 1.0 | 15,830 | 17,340 | 44.6 | 40.7 | 56.9 | 60.4 |


| 35 | 1.3780 | 72 | 2.8346 | 17.0 | 0.6693 | 1.0 | 1.0 | 8,550 | 8,280 | 48.0 | 44.0 | 59.4 | 62.4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.3780 | 72 | 2.8346 | 27.0 | 1.0625 | 1.0 | 1.0 | 13,960 | 15,570 | 48.0 | 44.0 | 59.4 | 62.4 |
|  | 1.3780 | 72 | 2.8346 | 54.0 | 2.1250 | 1.0 | 1.0 | 23,930 | 31,130 | 48.0 | 44.0 | 59.4 | 62.4 |
|  | 1.3780 | 80 | 3.1496 | 21.0 | 0.8268 | 1.5 | 1.0 | 14,990 | 14,820 | 51.2 | 46.2 | 65.4 | 70.2 |
|  | 1.3780 | 80 | 3.1496 | 21.0 | 0.8268 | 1.5 | 1.5 | 12,980 | 13,300 | 51.1 | 46.8 | 64.2 | 67.9 |
|  | 1.3780 | 80 | 3.1496 | 34.9 | 1.3750 | 1.5 | 1.5 | 19,620 | 22,640 | 51.1 | 46.8 | 64.2 | 67.9 | 


| 45 | 1.7717 | 85 | 3.3465 | 19.0 | 0.7480 | 1.5 | 1.0 | 14,190 | 15,060 | 59.1 | 54.5 | 72.1 | 76.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.7717 | 85 | 3.3465 | 19.0 | 0.7480 | 1.5 | 1.0 | 11,480 | 12,400 | 59.4 | 55.5 | 71.5 | 74.9 |
|  | 1.7717 | 85 | 3.3465 | 30.2 | 1.1875 | 1.5 | 1.0 | 18,310 | 22,600 | 59.4 | 55.5 | 71.5 | 74.9 |
|  | 1.7717 | 86 | 3.3970 | 39.7 | 1.5625 | 2.0 | 1.5 | 30,580 | 36,580 | 64.8 | 59.4 | 81.3 | 86.1 |
|  | 1.7717 | 97 | 3.8125 | 25.0 | 0.9843 | 1.5 | 1.5 | 22,380 | 22,900 | 64.6 | 58.5 | 82.5 | 88.5 |
|  | 1.7717 | 97 | 38.125 | 25.0 | 0.9843 | 2.0 | 1.5 | 19,710 | 20,800 | 64.8 | 59.4 | 81.3 | 86.1 |
| 50 | 1.9685 | 90 | 3.5433 | 20.0 | 0.7874 | 1.5 | 1.0 | 14,850 | 16,300 | 64.1 | 59.5 | 0.0 | 81.5 |
|  | 1.9685 | 90 | 3.5433 | 20.0 | 0.7874 | 1.5 | 1.0 | 11,700 | 13,160 | 64.4 | 60.5 | 76.7 | 79.5 |
|  | 1.9685 | 90 | 3.5433 | 30.2 | 1.1875 | 1.5 | 1.0 | 18,660 | 23,980 | 64.4 | 60.5 | 76.7 | 79.5 |
|  | 1.9685 | 90 | 3.5433 | 60.3 | 2.3750 | 1.5 | 1.0 | 32,000 | 47,960 | 64.4 | 60.5 | 76.7 | 79.5 |
|  | 1.9685 | 110 | 4.3307 | 27.0 | 1.0630 | 2.0 | 2.0 | 25,270 | 26,290 | 71.4 | 65.0 | 90.6 | 97.0 |
|  | 1.9685 | 110 | 4.3307 | 27.0 | 1.0630 | 2.0 | 2.0 | 22,950 | 24,410 | 71.0 | 65.2 | 89.2 | 94.5 |
|  | 1.9685 | 110 | 4.3307 | 40.0 | 1.5748 | 2.0 | 2.0 | 37,000 | 42,930 | 71.4 | 65.0 | 90.6 | 97.0 |
|  | 1.9685 | 110 | 4.3307 | 44.5 | 1.7500 | 2.0 | 2.0 | 36,090 | 43,690 | 71.0 | 65.2 | 89.2 | 94.5 |


| 55 | 2.1654 | 100 | 3.9370 | 21.0 | 0.8268 | 2.0 | 1.5 | 19,410 | 22,380 | 70.9 | 66.0 | 85.2 | 90.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 2.1654 | 100 | 3.9370 | 21.0 | 0.8268 | 2.0 | 1.5 | 14,580 | 16,840 | 71.1 | 66.9 | 84.2 | 88.0 |
|  | 2.1654 | 100 | 3.9370 | 33.3 | 1.3125 | 2.0 | 1.5 | 23,630 | 31,330 | 71.1 | 66.9 | 84.2 | 88.0 |
|  | 2.1654 | 120 | 4.7244 | 29.0 | 1.1417 | 2.0 | 2.0 | 31,150 | 32,700 | 77.6 | 70.5 | 99.3 | 106.5 |
|  | 2.1654 | 120 | 4.7244 | 29.0 | 1.1417 | 2.0 | 2.0 | 25,960 | 27,620 | 77.9 | 71.4 | 97.8 | 103.6 |
|  | 2.1654 | 120 | 4.7244 | 43.0 | 1.6929 | 2.0 | 2.0 | 45,440 | 53,140 | 77.6 | 70.5 | 99.3 | 106.5 |
|  | 2.1654 | 120 | 4.7244 | 49.2 | 1.9375 | 2.0 | 2.0 | 44,510 | 55,140 | 77.9 | 71.4 | 97.8 | 103.6 |

## Notes:

1. Some configurations may not be in production, check for availability
2. Actual retainer options may vary, check for retainer design availability
3. Corners rs \& rh are the maximum shaft and housing fillet radius that can be cleared


| INNER RACE SEPARABLE BOTH DIRECTIONS | INNER RACE SEPARABLE ONE DIRECTION | TWO PIECE INNER RACE FOUR FLANGE DESIGN | OUTER RACE SEPARABLE BOTH DIRECTIONS | OUTER RACE SEPARABLE ONE DIRECTION | INNER RACE SEPARABLE BOTH DIRECTIONS | NONSEPARABLE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E 1206 U | L 1206 U | LP 1206 U | U 1206 E | U 1206 L | E 1206 B | U 1206 B |
| E 5206 U | L 5206 U | LP 5206 U | U 5206 E | U 5206 L | E 5206 B | U 5206 B |
| E 1306 U | L 1306 U | LP 1306 U | U 1306 E | U 1306 L | E 1306 B | U 1306 B |
| E 5306 U | L 5306 U | LP 5306 U | U 5306 E | U 5306 L | E 5306 B | U 5306 B |


| E | 1207 | U |  | 1207 | U | LP | 1207 | U | U | 1207 | E | U | 1207 | L |  | 1207 | B | U | 1207 | B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E | 5207 | U | L | 5207 | U | LP | 5207 | U | U | 5207 | E | U | 5207 | L |  | 5207 | B | U | 5207 | B |
|  | - |  |  | - |  |  | - |  |  | - |  |  | - |  | E | 6207 | B |  | - |  |
| NU | 307 | E | NJ | 307 | E | NUP | 307 | E | N | 307 | E |  | - |  |  | - |  |  | - |  |
| E | 1307 | U | L | 1307 | U | LP | 1307 | U | U | 1307 | E | U | 1307 | L | E | 1307 | B | U | 1307 | B |
| E | 5307 | U | L | 5307 | U | LP | 5307 | U | U | 5307 | E | U | 5307 | L | E | 5307 | B | U | 5307 | B |


| E | 1208 |  |  | 1208 |  | LP | 1208 | U |  | 1208 | E |  | 1208 | L |  | 1208 | B |  | 1208 | B | B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E | 5208 | U | L | 5208 | U | LP | 5208 | U | U | 5208 | E | U | 5208 | L |  | 5208 | B | U | 5208 | B | B |
| NU | 308 | E | NJ | 308 | E | NUP | 308 | E | N | 308 | E |  |  |  | - |  |  | - |  |  |  |
| E | 1308 | U | L | 1308 | U | LP | 1308 | U | U | 1308 | E | U | 1308 | L |  | 1308 | B | U | 1308 | B | B |
| E | 5308 | U | L | 5308 | U | LP | 5308 | U | U | 5308 | E | U | 5308 | L | E | 5308 | B | U | 5308 | B | B |




| NU | 211 | E | NJ | 211 | E | NUP | 211 | E |  | 211 | E |  |  |  | - |  |  | - |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E | 1211 | U | L | 1211 | U | LP | 1211 | U |  | 1211 | E |  | 1211 |  |  | 1211 |  |  | 1211 | B |
| E | 5211 | U | L | 5211 | U | LP | 5211 | U | U | 5211 | E | U | 5211 | L |  | 5211 | B | U | 5211 | B |
| NU | 311 | E | NJ | 311 | E | NUP | 311 | E | N | 311 | E |  | - |  |  | - |  |  | - |  |
| E | 1311 | U | L | 1311 | U | LP | 1311 | U | U | 1311 | E | U | 1311 | L | E | 1311 | B | U | 1311 | B |
| NU | 2311 | E | NJ | 2311 | E | NUP | 2311 | E |  | 2311 | E |  | - |  |  | - |  |  | - |  |
| E | 5311 | U | L | 5311 | U | LP | 5311 | U | U | 5311 | E | U | 5311 | L | E | 5311 | B | U | 5311 | B |



| BORE |  | OUTSIDE <br> DIAMETER |  | WIDTH |  | RADIUS |  | BASIC DYNAMIC CAPACITY | BASIC STATIC CAPACITY | $\begin{aligned} & \hline \text { FLANGE } \\ & \text { O.D. } \\ & \text { INNER } \\ & \text { RACE } \\ & \hline \end{aligned}$ | O.D. INNER RACE | $\begin{aligned} & \text { FLANGE } \\ & \text { I.D. } \\ & \text { OUTER } \\ & \text { RACE } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { I.D. } \\ & \text { OUTER } \end{aligned}$ RACE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B |  | D |  | W |  | rs | rh | POUNDS | POUNDS | Fi | Ri | Fo | Ro |
| MM | INCH | MM | INCH | MM | INCH | MM |  |  |  | MM |  |  |  |
| 60 | 2.3622 | 110 | 4.3307 | 22.0 | 0.8661 | 1.5 | 1.5 | 21,680 | 23,940 | 77.7 | 72.0 | 94.4 | 100.0 |
|  | 2.3622 | 110 | 4.3307 | 22.0 | 0.8661 | 2.0 | 1.5 | 18,040 | 20,080 | 76.9 | 72.4 | 93.2 | 97.7 |
|  | 2.3622 | 110 | 4.3307 | 36.5 | 1.4375 | 2.0 | 1.5 | 30,400 | 39,290 | 76.9 | 72.4 | 93.2 | 97.7 |
|  | 2.3622 | 110 | 4.3307 | 73.0 | 2.8750 | 2.0 | 1.5 | 52,120 | 78,570 | 76.9 | 72.4 | 93.2 | 97.7 |
|  | 2.3622 | 130 | 5.1181 | 31.0 | 1.2205 | 2.0 | 2.0 | 34,500 | 36,730 | 84.5 | 77.0 | 107.4 | 115.0 |
|  | 2.3622 | 130 | 5.1181 | 31.0 | 1.2205 | 2.5 | 2.0 | 30,240 | 32,570 | 84.6 | 77.5 | 106.3 | 112.4 |
|  | 2.3622 | 130 | 5.1181 | 46.0 | 1.8110 | 2.0 | 2.0 | 50,810 | 60,420 | 84.5 | 77.0 | 107.4 | 115.0 |
|  | 2.3622 | 130 | 5.1181 | 54.0 | 2.1250 | 2.5 | 2.0 | 53,440 | 67,710 | 84.6 | 77.5 | 106.3 | 112.4 |
| 65 | 2.5591 | 120 | 4.7244 | 23.0 | 0.9055 | 1.5 | 1.5 | 24,730 | 27,720 | 84.6 | 78.5 | 102.5 | 108.5 |
|  | 2.5591 | 120 | 4.7244 | 23.0 | 0.9055 | 2.5 | 1.5 | 20,860 | 24,920 | 85.3 | 80.4 | 101.2 | 105.7 |
|  | 2.5591 | 120 | 4.7244 | 38.1 | 1.5000 | 2.5 | 1.5 | 20,860 | 24,920 | 85.3 | 80.4 | 101.2 | 105.7 |
|  | 2.5591 | 140 | 5.5118 | 33.0 | 1.2992 | 2.0 | 2.0 | 41,230 | 44,240 | 90.7 | 82.5 | 116.1 | 124.5 |
|  | 2.5591 | 140 | 5.5118 | 33.0 | 1.2992 | 2.5 | 2.0 | 35,720 | 39,080 | 90.7 | 82.5 | 114.7 | 120.2 |
|  | 2.5591 | 140 | 5.5118 | 48.0 | 1.8898 | 2.0 | 2.0 | 56,230 | 65,930 | 90.7 | 82.5 | 116.1 | 124.5 |
|  | 2.5591 | 140 | 5.5118 | 58.7 | 2.3125 | 2.5 | 2.0 | 65,530 | 81,950 | 90.7 | 82.5 | 114.7 | 120.2 |
| 70 | 2.7559 | 125 | 4.9213 | 24.0 | 0.9449 | 1.5 | 1.5 | 24,820 | 28,140 | 89.4 | 83.5 | 107.2 | 113.5 |
|  | 2.7559 | 125 | 4.9213 | 24.0 | 0.9449 | 2.5 | 1.5 | 23,440 | 28,380 | 89.7 | 84.8 | 106.7 | 111.5 |
|  | 2.7559 | 125 | 4.9213 | 31.0 | 1.2205 | 1.5 | 1.5 | 24,820 | 28,140 | 89.4 | 83.5 | 107.2 | 113.5 |
|  | 2.7559 | 125 | 4.9213 | 39.7 | 1.5625 | 2.5 | 1.5 | 38,440 | 53,600 | 89.7 | 84.8 | 106.7 | 111.5 |
|  | 2.7559 | 125 | 4.9213 | 79.4 | 3.1250 | 2.5 | 1.5 | 65,900 | 107,190 | 89.7 | 84.8 | 106.7 | 111.5 |
|  | 2.7559 | 150 | 5.9055 | 35.0 | 1.3780 | 2.0 | 2.0 | 46,650 | 51,190 | 97.5 | 89.0 | 124.2 | 133.0 |
|  | 2.7559 | 150 | 5.9055 | 35.0 | 1.3780 | 3.2 | 2.0 | 43,250 | 49,040 | 97.3 | 89.2 | 122.2 | 129.3 |
|  | 2.7559 | 150 | 5.9055 | 51.0 | 2.0079 | 2.0 | 2.0 | 62,170 | 74,040 | 97.5 | 89.0 | 124.2 | 133.0 |
|  | 2.7559 | 150 | 5.9055 | 63.5 | 2.5000 | 3.2 | 2.0 | 70,550 | 92,000 | 97.3 | 89.2 | 122.2 | 129.3 |


| 75 | 2.9528 | 115 | 4.5276 | 20.0 | 0.7874 | 2.0 | 1.0 | 13,830 | 17,660 | 89.2 | 85.2 | 101.0 | 104.9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 2.9528 | 130 | 5.1181 | 25.0 | 0.9843 | 1.5 | 1.5 | 29,840 | 36,370 | 94.5 | 88.5 | 112.3 | 118.5 |
|  | 2.9528 | 130 | 5.1181 | 25.0 | 0.9843 | 2.5 | 1.5 | 23,350 | 28,560 | 94.4 | 89.0 | 111.0 | 115.7 |
|  | 2.9528 | 130 | 5.1181 | 31.0 | 1.2205 | 1.5 | 1.5 | 36,950 | 47,870 | 94.5 | 88.5 | 112.3 | 118.5 |
|  | 2.9528 | 130 | 5.1181 | 41.3 | 1.6250 | 2.5 | 1.5 | 40,030 | 57,120 | 94.4 | 89.0 | 111.0 | 115.7 |
|  | 2.9528 | 160 | 6.2992 | 37.0 | 1.4567 | 2.0 | 2.0 | 54,720 | 60,570 | 104.2 | 95.0 | 133.4 | 143.0 |
|  | 2.9528 | 160 | 6.2992 | 37.0 | 1.4567 | 3.2 | 2.0 | 43,010 | 47,240 | 104.5 | 95.9 | 131.4 | 139.1 |
|  | 2.9528 | 160 | 6.2992 | 55.0 | 2.1654 | 2.0 | 2.0 | 54,720 | 60,570 | 104.2 | 95.0 | 133.4 | 143.0 |
|  | 2.9528 | 160 | 6.2992 | 68.3 | 2.6875 | 3.2 | 2.0 | 82,570 | 109,260 | 104.5 | 95.9 | 131.4 | 139.1 |


| 80 | 3.1496 | 140 | 5.5118 | 26.0 | 1.0236 | 1.8 | 2.0 | 31,950 | 38,850 | 101.7 | 95.3 | 121.4 | 127.3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3.1496 | 140 | 5.5118 | 26.0 | 1.0236 | 2.5 | 2.0 | 25,480 | 30,670 | 101.7 | 95.3 | 119.4 | 124.6 |
|  | 3.1496 | 140 | 5.5118 | 33.0 | 1.2992 | 1.8 | 2.0 | 42,490 | 56,050 | 101.7 | 95.3 | 121.4 | 127.3 |
|  | 3.1496 | 140 | 5.5118 | 44.5 | 1.7500 | 2.5 | 2.0 | 45,290 | 64,230 | 101.1 | 95.3 | 119.4 | 124.6 |
|  | 3.1496 | 140 | 5.5118 | 88.9 | 3.5000 | 2.5 | 2.0 | 45,290 | 64,230 | 101.1 | 95.3 | 119.4 | 124.6 |
|  | 3.1496 | 170 | 6.6929 | 39.0 | 1.5354 | 2.0 | 2.0 | 59,020 | 65,950 | 110.6 | 101.0 | 141.0 | 151.0 |
|  | 3.1496 | 170 | 6.6929 | 39.0 | 1.5354 | 3.2 | 2.0 | 51,590 | 58,530 | 110.7 | 101.6 | 139.2 | 147.3 |

## Notes:

1. Some configurations may not be in production, check for availability
2. Actual retainer options may vary, check for retainer design availability
3. Corners rs \& rh are the maximum shaft and housing fillet radius that can be cleared

CYLINDRICAL RADIAL ROLLER BEARINGS

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INNER RACE SEPARABLE BOTH DIRECTIONS | $\begin{aligned} & \text { INNER RACE } \\ & \text { SEPARABLE } \\ & \text { ONE DIRECTION } \end{aligned}$ | TWO PIECE INNER RACE FOUR FLANGE DESIGN | OUTER RACE SEPARABLE BOTH DIRECTIONS | $\begin{aligned} & \text { OUTER RACE } \\ & \text { SEPARABLE } \\ & \text { ONE DIRECTION } \end{aligned}$ | INNER RACE SEPARABLE BOTH DIRECTIONS | NONSEPARABLE |
| NU 212 E | NJ 212 E | NUP 212 E | N 212 E | - | - | - |
| E 1212 U | L 1212 U | LP 1212 U | U 1212 E | U 1212 L | E 1212 B | U 1212 B |
| E 5212 U | L 5212 U | LP 5212 U | U 5212 E | U 5212 L | E 5212 B | U 5212 B |
| - | - | - | - | - | E 6212 B | - |
| NU 312 E | NJ 312 E | NUP 312 E | N 312 E | - | - | - |
| E 1312 U | L 1312 U | LP 1312 U | U 1312 E | U 1312 L | E 1312 B | U 1312 B |
| NU 2312 E | NJ 2312 E | NUP 2312 E | N 2312 E | - | - | - |
| E 5312 U | L 5312 U | LP 5312 U | U 5312 E | U 5312 L | E 5312 B | U 5312 B |


| NU 213 | E | N | 213 | E | NUP | 213 | E |  | 213 | E | - |  |  | - |  |  | - |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E 1213 | U | L | 1213 | U | LP | 1213 | U | U | 1213 | E |  | 1213 | L |  | 1213 |  |  | 1213 | B |
| E 5213 | U | L | 5213 | U | LP | 5213 | U | U | 5213 | E |  | 5213 | L |  | 5213 | B |  | 5213 | B |
| NU 313 | E | N | 313 | E | NUP | 313 | E | N | 313 | E | - |  |  | - |  |  | - |  |  |
| E 1313 | U | L | 1313 | U | LP | 1313 | U | U | 1313 | E | U | 1313 | L | E | 1313 | B | U | 1313 | B |
| NU 2313 | E | N | 2313 | E | NUP | 2313 | E |  | 2313 | E |  |  |  | - |  |  | - |  |  |
| E 5313 | U | L | 5313 | U | LP | 5313 | U | U | 5313 | E | U | 5313 | L | E | 5313 | B | U | 5313 | B |


| NU | 214 | E | NJ | 214 | E | NUP | 214 | E |  | 214 | E | - |  |  | - |  |  | - |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E | 1214 | U | L | 1214 | U | LP | 1214 | U |  | 1214 | E |  | 1214 | L |  | 1214 | B |  | 1214 | B |
| NU | 2214 | E |  | 2214 | E | NUP | 2214 | E |  | 2214 | E |  |  |  |  |  |  | - |  |  |
| E | 5214 | U | L | 5214 | U | LP | 5214 | U | U | 5214 | E | U | 5214 | L |  | 5214 | B |  | 5214 | B |
|  | - |  |  | - |  | - |  |  | - |  |  | - |  |  | E | 6214 | B |  | - |  |
| NU | 314 | E | NJ | 314 | E | NUP | 314 | E |  | 314 | E |  | - |  |  |  |  | - |  |  |
| E | 1314 | U | L | 1314 | U | LP | 1314 | U | U | 1314 | E | U | 1314 | L | E | 1314 | B |  | 1314 | B |
| NU | 2314 | E | NJ | 2314 | E | NUP | 2314 | E |  | 2314 | E | - |  |  | - |  |  | - |  |  |
| E | 5314 | U | L | 5314 | U | LP | 5314 | U | U | 5314 | E | U | 5314 | L | E | 5314 | B | U | 5314 | B |





| BORE |  | OUTSIDE <br> DIAMETER |  | WIDTH |  | RADIUS |  | BASIC DYNAMIC CAPACITY | BASIC STATIC CAPACITY | $\begin{gathered} \hline \text { FLANGE } \\ \text { O.D. } \\ \text { INNER } \\ \text { RACE } \end{gathered}$ | O.D. INNER RACE | $\begin{aligned} & \hline \text { FLANGE } \\ & \text { I.D. } \\ & \text { OUTER } \\ & \text { RACE } \end{aligned}$ | I.D. OUTER <br> RACE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B |  | D |  | W |  | rs | rh | POUNDS | POUNDS | Fi | Ri | Fo | Ro |
| MM | INCH | MM | INCH | MM | INCH | MM |  |  |  | MM |  |  |  |
| 80 | 3.1496 | 170 | 6.6929 | 58.0 | 2.2835 | 2.0 | 2.0 | 81,400 | 99,700 | 110.6 | 101.0 | 141.0 | 151.0 |
|  | 3.1496 | 170 | 6.6929 | 68.3 | 2.6875 | 3.2 | 2.0 | 90,200 | 120,040 | 110.7 | 101.6 | 139.2 | 147.3 |


| 85 | 3.3465 | 130 | 5.1181 | 22.0 | 0.8661 | 2.0 | 1.0 | 20,120 | 27,290 | 100.8 | 96.3 | 113.9 | 118.7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3.3465 | 150 | 5.9055 | 28.0 | 1.1024 | 2.0 | 2.0 | 37,930 | 45,530 | 107.6 | 100.5 | 129.3 | 136.5 |
|  | 3.3465 | 150 | 5.9055 | 28.0 | 1.1024 | 3.2 | 2.0 | 31,040 | 37,940 | 108.5 | 102.0 | 128.4 | 134.1 |
|  | 3.3465 | 150 | 5.9055 | 36.0 | 1.4173 | 2.0 | 2.0 | 49,220 | 63,640 | 107.6 | 100.5 | 129.3 | 136.5 |
|  | 3.3465 | 150 | 5.9055 | 49.2 | 1.9375 | 3.2 | 2.0 | 55,960 | 80,940 | 108.5 | 102.0 | 128.4 | 134.1 |
|  | 3.3465 | 180 | 7.0866 | 41.0 | 1.6142 | 2.5 | 2.5 | 63,470 | 71,680 | 118.0 | 108.0 | 149.6 | 160.0 |
|  | 3.3465 | 180 | 7.0866 | 41.0 | 1.6142 | 4.0 | 2.5 | 52,360 | 58,040 | 118.2 | 108.5 | 148.6 | 157.3 |
|  | 3.3465 | 180 | 7.0866 | 60.0 | 2.3622 | 2.5 | 2.5 | 84,940 | 104,260 | 118.0 | 108.0 | 149.6 | 160.0 |
|  | 3.3465 | 180 | 7.0866 | 73.0 | 2.8750 | 4.0 | 2.5 | 100,450 | 134,110 | 118.2 | 108.5 | 148.6 | 157.3 |
| 90 | 3.5433 | 160 | 6.2992 | 30.0 | 1.1811 | 2.0 | 2.0 | 41,950 | 50,850 | 114.5 | 107.0 | 137.4 | 145.0 |
|  | 3.5433 | 160 | 6.2992 | 30.0 | 1.1811 | 3.2 | 2.0 | 36,400 | 44,770 | 114.2 | 107.2 | 135.9 | 142.1 |
|  | 3.5433 | 160 | 6.2992 | 40.0 | 1.5748 | 2.0 | 2.0 | 55,410 | 72,730 | 114.5 | 107.0 | 137.4 | 145.0 |
|  | 3.5433 | 160 | 6.2992 | 52.4 | 2.0625 | 3.2 | 2.0 | 64,800 | 93,990 | 114.2 | 107.2 | 135.9 | 142.1 |
|  | 3.5433 | 190 | 7.4803 | 43.0 | 1.6929 | 2.5 | 2.5 | 71,900 | 81,460 | 124.2 | 113.5 | 158.3 | 169.5 |
|  | 3.5433 | 190 | 7.4803 | 43.0 | 1.6929 | 4.0 | 2.5 | 65,930 | 76,800 | 123.4 | 114.0 | 156.2 | 165.3 |
|  | 3.5433 | 190 | 7.4803 | 64.0 | 2.5197 | 2.5 | 2.5 | 98,570 | 122,210 | 124.2 | 113.5 | 158.3 | 169.5 |
|  | 3.5433 | 190 | 7.4803 | 73.0 | 2.8750 | 4.0 | 2.5 | 109,420 | 147,290 | 123.4 | 114.0 | 156.2 | 165.3 |


| 95 | 3.7402 | 170 | 6.6929 | 32.0 | 1.2598 | 2.0 | 2.0 | 48,060 | 57,570 | 120.7 | 112.5 | 146.1 | 154.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3.7402 | 170 | 6.6929 | 32.0 | 1.2598 | 3.2 | 2.0 | 42,800 | 53,330 | 121.0 | 113.5 | 144.5 | 151.2 |
|  | 3.7402 | 170 | 6.6929 | 43.0 | 1.6929 | 2.0 | 2.0 | 62,170 | 80,150 | 120.7 | 112.5 | 146.1 | 154.5 |
|  | 3.7402 | 170 | 6.6929 | 55.6 | 2.1875 | 3.2 | 2.0 | 74,750 | 109,230 | 121.0 | 113.5 | 144.5 | 151.2 |
|  | 3.7402 | 170 | 6.6929 | 111.1 | 4.3750 | 3.2 | 2.0 | 128,160 | 218,460 | 121.0 | 113.5 | 144.5 | 151.2 |
|  | 3.7402 | 200 | 7.8740 | 45.0 | 1.7717 | 3.0 | 2.5 | 76,090 | 88,880 | 132.2 | 121.5 | 166.3 | 177.5 |
|  | 3.7402 | 200 | 7.8740 | 45.0 | 1.7717 | 4.0 | 2.5 | 62,320 | 72,200 | 132.5 | 122.1 | 164.3 | 173.4 |
|  | 3.7402 | 200 | 7.8740 | 67.0 | 2.6378 | 3.0 | 2.5 | 104,300 | 133,340 | 132.2 | 121.5 | 166.3 | 177.5 |
|  | 3.7402 | 200 | 7.8740 | 77.8 | 3.0625 | 4.0 | 2.5 | 103,420 | 138,460 | 132.5 | 122.1 | 164.3 | 173.4 |


| 100 | 3.9370 | 180 | 7.0866 | 34.0 | 1.3386 | 2.0 | 2.0 | 54,310 | 66,320 | 127.5 | 119.0 | 0.0 | 163.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3.9370 | 180 | 7.0866 | 34.0 | 1.3386 | 4.0 | 2.0 | 46,820 | 58,420 | 129.0 | 121.0 | 154.2 | 161.1 |
|  | 3.9370 | 180 | 7.0866 | 46.0 | 1.8110 | 2.0 | 2.0 | 72,370 | 95,930 | 127.5 | 119.0 | 0.0 | 163.0 |
|  | 3.9370 | 180 | 7.0866 | 60.3 | 2.3750 | 4.0 | 2.0 | 84,220 | 124,280 | 129.0 | 121.0 | 154.2 | 161.1 |
|  | 3.9370 | 180 | 7.0866 | 120.7 | 4.7500 | 4.0 | 2.0 | 144,400 | 248,570 | 129.0 | 121.0 | 154.2 | 161.1 |
|  | 3.9370 | 215 | 8.4646 | 47.0 | 1.8504 | 2.5 | 2.5 | 87,520 | 99,400 | 139.6 | 127.5 | 178.7 | 191.5 |
|  | 3.9370 | 215 | 8.4646 | 47.0 | 1.8504 | 4.7 | 2.5 | 68,220 | 79,160 | 141.1 | 130.2 | 175.1 | 184.8 |
|  | 3.9370 | 215 | 8.4646 | 73.0 | 2.8740 | 2.5 | 2.5 | 130,230 | 165,680 | 139.6 | 127.5 | 178.7 | 191.5 |
|  | 3.9370 | 215 | 8.4646 | 82.6 | 3.2500 | 4.7 | 2.5 | 123,110 | 169,100 | 141.1 | 130.2 | 175.1 | 184.8 |


| 105 | 4.1339 | 160 | 6.2992 | 26.0 | 1.0236 | 2.5 | 2.0 | 29,630 | 42,300 | 124.5 | 119.2 | 140.6 | 145.8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 4.1339 | 190 | 7.4803 | 36.0 | 1.4173 | 4.0 | 2.0 | 52,740 | 67,070 | 134.9 | 126.5 | 161.0 | 168.5 |
|  | 4.1339 | 190 | 7.4803 | 65.1 | 2.5625 | 4.0 | 2.0 | 98,710 | 150,150 | 134.9 | 126.5 | 161.0 | 168.5 |

## Notes:

1. Some configurations may not be in production, check for availability
2. Actual retainer options may vary, check for retainer design availability
3. Corners rs \& rh are the maximum shaft and housing fillet radius that can be cleared

CYLINDRICAL RADIAL ROLLER BEARINGS


| INNER RACE SEPARABLE BOTH DIRECTIONS | $\begin{aligned} & \text { INNER RACE } \\ & \text { SEPARABLE } \\ & \text { ONE DIRECTION } \end{aligned}$ | TWO PIECE INNER RACE FOUR FLANGE DESIGN | OUTER RACE SEPARABLE BOTH DIRECTIONS | $\begin{aligned} & \text { OUTER RACE } \\ & \text { SEPARABLE } \\ & \text { ONE DIRECTION } \end{aligned}$ | INNER RACE SEPARABLE BOTH DIRECTIONS | NONSEPARABLE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NU 2316 E | NJ 2316 E | NUP 2316 E | N 2316 E | - | - | - |
| E 5316 U | L 5316 U | LP 5316 U | U 5316 E | U 5316 L | E 5316 B | U 5316 B |
| E 1017 U | L 1017 U | LP 1017 U | U 1017 E | U 1017 L | - | - |
| NU 217 E | NJ 217 E | NUP 217 E | N 217 E | - | - | - |
| E 1217 U | L 1217 U | LP 1217 U | U 1217 E | U 1217 L | E 1217 B | U 1217 B |
| NU 2217 E | NJ 2217 E | NUP 2217 E | N 2217 E | - | - | - |
| E 5217 U | L 5217 U | LP 5217 U | U 5217 E | U 5217 L | E 5217 B | U 5217 B |
| NU 317 E | NJ 317 E | NUP 317 E | N 317 E | - | - | - |
| E 1317 U | L 1317 U | LP 1317 U | U 1317 E | U 1317 L | E 1317 B | U 1317 B |
| NU 2317 E | NJ 2317 E | NUP 2317 E | N 2317 E | - | - | - |
| E 5317 U | L 5317 U | LP 5317 U | U 5317 E | U 5317 L | E 5317 B | U 5317 B |


| NU | 218 | E | NJ | 218 | E | NUP | 218 | E |  | 218 | E | - |  |  | - |  |  | - |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E | 1218 | U | L | 1218 | U | LP | 1218 | U | U | 1218 | E | U | 1218 | L |  | 1218 | B | U | 1218 |  | B |
| NU | 2218 | E | NJ | 2218 | E | NUP | 2218 | E | N | 2218 | E | - |  |  | - |  |  | - |  |  |  |
| E | 5218 | U | L | 5218 | U | LP | 5218 | U | U | 5218 | E | U | 5218 | L | E | 5218 | B | U | 5218 |  | B |
| NU | 318 | E | NJ | 318 | E | NUP | 318 | E | N | 318 | E |  |  |  |  |  |  | - |  |  |  |
| E | 1318 | U | L | 1318 | U | LP | 1318 | U | U | 1318 | E | U | 1318 | L | E | 1318 | B | U | 1318 |  | B |
| NU | 2318 | E | NJ | 2318 | E | NUP | 2318 | E | N | 2318 | E | - |  |  | - |  |  | - |  |  |  |
| E | 5318 | U | L | 5318 | U | LP | 5318 | U | U | 5318 | E | U | 5318 | L | E | 5318 | B | U | 5318 |  | B |


| NU | 219 | E |  | 219 | E | NUP | 219 | E |  | 219 | E |  |  |  | - |  |  | - |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E | 1219 | U | L | 1219 | U | LP | 1219 | U | U | 1219 | E |  | 1219 |  |  | 1219 |  |  | 1219 |  | B |
| NU | 2219 | E | NJ | 2219 | E | NUP | 2219 | E | N | 2219 | E | - |  |  | - |  |  | - |  |  |  |
| E | 5219 | U | L | 5219 | U | LP | 5219 | U | U | 5219 | E |  | 5219 | L |  | 5219 |  |  | 5219 |  | B |
|  | - |  |  | - |  | - |  |  | - |  |  |  |  |  |  | 6219 |  |  | - |  |  |
| NU | 319 | E | NJ | 319 | E | NUP | 319 | E | N | 319 | E |  |  |  |  |  |  | - |  |  |  |
| E | 1319 | U | L | 1319 | U | LP | 1319 | U | U | 1319 | E | U | 1319 | L | E 1319 |  |  | U | 1319 |  | B |
| NU | 2319 | E | NJ | 2319 | E | NUP | 2319 | E | N | 2319 | E | - |  |  | - |  |  | - |  |  |  |
| E | 5319 | U | L | 5319 | U | LP | 5319 | U | U | 5319 | E | U | 5319 | L |  | 5319 |  | $U$ | 5319 |  | B |



| E | 1021 |  |  | 1021 |  | LP | 1021 | U |  | 1021 | E |  | 1021 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E | 1221 | U | L | 1221 | U | LP | 1221 | U | U | 1221 | E | U | 1221 | L |  | 1221 | B |  | 1221 | B | B |
| E | 5221 | U | L | 5221 | U | LP | 5221 | U | U | 5221 | E | U | 5221 | L |  | 5221 | B |  | 5221 | B | B |



| BORE |  | OUTSIDE <br> DIAMETER |  | WIDTH |  | RADIUS |  | BASIC DYNAMIC CAPACITY | BASIC STATIC CAPACITY | $\begin{gathered} \hline \text { FLANGE } \\ \text { O.D. } \\ \text { INNER } \\ \text { RACE } \\ \hline \end{gathered}$ | O.D. INNER RACE | FLANGE I.D. OUTER RACE | $\begin{aligned} & \text { I.D. } \\ & \text { OUTER } \end{aligned}$ RACE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B |  | D |  | W |  | rs | rh | POUNDS | POUNDS | Fi | Ri | Fo | Ro |
| MM | INCH | MM | INCH | MM | INCH | MM |  |  |  | MM |  |  |  |
| 105 | 4.1339 | 225 | 8.8583 | 49.0 | 1.9291 | 4.7 | 3.0 | 98,160 | 112,230 | 146.6 | 132.9 | 187.4 | 200.9 |
|  | 4.1339 | 225 | 8.8583 | 49.0 | 1.9291 | 4.7 | 2.5 | 80,860 | 96,820 | 147.2 | 136.2 | 183.2 | 193.4 |
|  | 4.1339 | 225 | 8.8583 | 87.3 | 3.4375 | 4.7 | 2.5 | 131,000 | 180,040 | 147.2 | 136.2 | 183.2 | 193.4 |


| 110 | 4.3307 | 170 | 6.6929 | 28.0 | 1.1024 | 2.5 | 2.0 | 35,740 | 51,470 | 130.8 | 125.3 | 149.0 | 154.7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 4.3307 | 200 | 7.8740 | 38.0 | 1.4961 | 2.0 | 2.0 | 66,640 | 84,000 | 141.7 | 132.5 | 170.9 | 180.5 |
|  | 4.3307 | 200 | 7.8740 | 38.0 | 1.4961 | 4.0 | 2.0 | 54,200 | 68,940 | 141.6 | 132.9 | 168.4 | 176.1 |
|  | 4.3307 | 200 | 7.8740 | 53.0 | 2.0866 | 2.0 | 2.0 | 87,050 | 118,430 | 141.7 | 132.5 | 170.9 | 180.5 |
|  | 4.3307 | 200 | 7.8740 | 69.9 | 2.7500 | 4.0 | 2.0 | 98,430 | 148,440 | 141.6 | 132.9 | 168.4 | 176.1 |
|  | 4.3307 | 240 | 9.4488 | 50.0 | 1.9685 | 2.5 | 2.5 | 98,340 | 113,870 | 155.8 | 143.0 | 197.4 | 211.0 |
|  | 4.3307 | 240 | 9.4488 | 50.0 | 1.9685 | 4.7 | 2.5 | 91,630 | 111,510 | 157.5 | 145.3 | 195.4 | 206.3 |
|  | 4.3307 | 240 | 9.4488 | 80.0 | 3.1496 | 2.5 | 2.5 | 145,610 | 188,610 | 155.8 | 143.0 | 197.4 | 211.0 |
|  | 4.3307 | 240 | 9.4488 | 92.1 | 3.6250 | 4.7 | 2.5 | 170,820 | 248,370 | 157.5 | 145.3 | 195.4 | 206.3 | 


| 120 | 4.7244 | 180 | 7.0866 | 28.0 | 1.1024 | 3.2 | 2.0 | 34,330 | 49,790 | 141.2 | 135.2 | 158.9 | 164.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4.7244 | 180 | 7.0866 | 46.0 | 1.8110 | 3.2 | 2.0 | 53,990 | 89,140 | 141.2 | 135.2 | 158.9 | 164.5 |
|  | 4.7244 | 215 | 8.4646 | 40.0 | 1.5748 | 2.0 | 2.0 | 77,210 | 98,460 | 153.4 | 143.5 | 185.1 | 195.5 |
|  | 4.7244 | 215 | 8.4646 | 40.0 | 1.5748 | 4.7 | 2.0 | 63,890 | 84,070 | 154.3 | 145.1 | 182.7 | 190.9 |
|  | 4.7244 | 215 | 8.4646 | 58.0 | 2.2835 | 2.0 | 2.0 | 107,490 | 150,660 | 153.4 | 143.5 | 185.1 | 195.5 |
|  | 4.7244 | 215 | 8.4646 | 76.2 | 3.0000 | 4.7 | 2.0 | 124,410 | 198,060 | 154.3 | 145.1 | 182.7 | 190.9 |
|  | 4.7244 | 260 | 10.2362 | 55.0 | 2.1654 | 2.5 | 2.5 | 120,370 | 140,640 | 168.7 | 154.0 | 214.8 | 230.0 |
|  | 4.7244 | 260 | 10.2362 | 55.0 | 2.1654 | 6.4 | 2.5 | 97,160 | 116,130 | 170.2 | 157.0 | 211.2 | 223.0 |
|  | 4.7244 | 260 | 10.2362 | 86.0 | 3.3858 | 2.5 | 2.5 | 179,680 | 235,410 | 168.7 | 154.0 | 214.8 | 230.0 |
|  | 4.7244 | 260 | 10.2362 | 104.8 | 4.1250 | 6.4 | 2.5 | 190,370 | 275,740 | 170.2 | 157.0 | 211.2 | 223.0 |


| 130 | 5.1181 | 200 | 7.8740 | 33.0 | 1.2992 | 3.2 | 2.0 | 45,750 | 65,870 | 154.2 | 147.6 | 175.5 | 182.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5.1181 | 200 | 7.8740 | 52.0 | 2.0472 | 3.2 | 2.0 | 77,780 | 130,310 | 154.2 | 147.6 | 175.5 | 182.5 |
|  | 5.1181 | 230 | 9.0551 | 40.0 | 1.5748 | 4.7 | 2.5 | 68,550 | 89,760 | 164.7 | 155.0 | 195.2 | 203.8 |
|  | 5.1181 | 230 | 9.0551 | 64.0 | 2.5197 | 4.7 | 2.5 | 147,240 | 239,880 | 164.7 | 155.0 | 195.2 | 203.8 |
|  | 5.1181 | 280 | 11.0236 | 58.0 | 2.2835 | 4.0 | 3.2 | 132,780 | 157,260 | 183.0 | 167.0 | 231.0 | 247.0 |
|  | 5.1181 | 280 | 11.0236 | 58.0 | 2.2835 | 6.4 | 3.2 | 111,770 | 134,200 | 184.9 | 170.5 | 229.8 | 242.7 |
|  | 5.1181 | 280 | 11.0236 | 93.0 | 3.6614 | 4.0 | 3.2 | 197,370 | 261,790 | 183.0 | 167.0 | 231.0 | 247.0 |
|  | 5.1181 | 280 | 11.0236 | 111.1 | 4.3750 | 6.4 | 3.2 | 222,500 | 325,200 | 184.9 | 170.5 | 229.8 | 242.7 |
| 140 | 5.5118 | 210 | 8.2677 | 33.0 | 1.2992 | 4.0 | 2.0 | 43,960 | 63,550 | 164.3 | 157.6 | 185.6 | 192.4 |
|  | 5.5118 | 210 | 8.2677 | 53.0 | 2.0866 | 4.0 | 2.0 | 74,740 | 125,720 | 164.3 | 157.6 | 185.6 | 192.4 |
|  | 5.5118 | 220 | 8.6614 | 36.0 | 1.4173 | 2.0 | 2.0 | 44,430 | 61,230 | 169.4 | 161.9 | 192.9 | 200.0 |
|  | 5.5118 | 220 | 8.6614 | 63.5 | 2.5000 | 2.0 | 2.0 | 92,040 | 156,150 | 169.4 | 161.9 | 192.9 | 200.0 |
|  | 5.5118 | 250 | 9.8425 | 42.0 | 1.6535 | 4.7 | 2.5 | 76,930 | 100,870 | 179.1 | 168.5 | 211.8 | 221.5 |
|  | 5.5118 | 250 | 9.8425 | 82.6 | 3.2500 | 4.7 | 2.5 | 150,540 | 238,650 | 179.1 | 168.5 | 211.8 | 221.5 |
|  | 5.5118 | 300 | 11.8110 | 62.0 | 2.4409 | 4.0 | 4.0 | 140,420 | 171,760 | 196.0 | 180.0 | 247.2 | 260.0 |
|  | 5.5118 | 300 | 11.8110 | 62.0 | 2.4409 | 7.9 | 3.2 | 124,750 | 151,480 | 197.0 | 181.7 | 244.3 | 258.0 |

## Notes:

1. Some configurations may not be in production, check for availability
2. Actual retainer options may vary, check for retainer design availability
3. Corners rs \& rh are the maximum shaft and housing fillet radius that can be cleared


| INNER RACE SEPARABLE BOTH DIRECTIONS | INNER RACE SEPARABLE ONE DIRECTION | TWO PIECE INNER RACE FOUR FLANGE DESIGN | OUTER RACE SEPARABLE BOTH DIRECTIONS | OUTER RACE SEPARABLE ONE DIRECTION | INNER RACE SEPARABLE BOTH DIRECTIONS | NONSEPARABLE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NU 321 E | NJ 321 E | NUP 321 E | N 321 E |  |  |  |
| E 1321 U | L 1321 U | LP 1321 U | U 1321 E | U 1321 L | E 1321 B | U 1321 B |
| E 5321 U | L 5321 U | LP 5321 U | U 5321 E | U 5321 L | E 5321 B | U 5321 B |


| E | 1022 | U | L | 1022 | U | LP | 1022 | U |  | 1022 | E |  | 1022 |  |  | - |  |  | - |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NU | 222 | E | NJ | 222 | E | NUP | 222 | E | N | 222 | E |  | - |  |  | - |  |  | - |  |
| E | 1222 | U | L | 1222 | U | LP | 1222 | U | U | 1222 | E | U | 1222 | L |  | 1222 |  |  | 1222 | B |
| NU | 2222 | E | NJ | 2222 | E | NUP | 2222 | E | N | 2222 | E |  | - |  |  | - |  |  | - |  |
| E | 5222 | U | L | 5222 | U | LP | 5222 | U | U | 5222 | E | U | 5222 | L | E | 5222 | B | U | 5222 | B |
| NU | 322 | E | NJ | 322 | E | NUP | 322 | E | N | 322 | E |  | - |  |  | - |  |  | - |  |
| E | 1322 | U | L | 1322 | U | LP | 1322 | U | U | 1322 | E | U | 1322 | L | E | 1322 | B | U | 1322 | B |
| NU | 2322 | E | NJ | 2322 | E | NUP | 2322 | E | N | 2322 | E |  | - |  |  | - |  |  | - |  |
| E | 5322 | U | L | 5322 | U | LP | 5322 | U | U | 5322 | E | U | 5322 | L | E | 5322 | B | U | 5322 | B |



| E | 1024 | U |  | 1024 |  | LP | 1024 | U |  | 1024 | E |  | 1024 | L |  |  |  | - |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E | 5024 | U | L | 5024 | U | LP | 5024 | U | U | 5024 | E | U | 5024 | L |  | 5024 |  |  | 5024 |  | B |
| NU | 224 | E | NJ | 224 | E | NUP | 224 | E | N | 224 | E | - |  |  |  |  |  |  |  |  |  |
| E | 1224 | U | L | 1224 | U | LP | 1224 | U | U | 1224 | E | U | 1224 | L |  | 1224 | B |  | 1224 |  | B |
| NU | 2224 | E | NJ | 2224 | E | NUP | 2224 | E | N | 2224 | E |  |  |  |  |  |  | - |  |  |  |
| E | 5224 | U | L | 5224 | U | LP | 5224 | U | U | 5224 | E | U | 5224 | L | E | 5224 | B | U | 5224 |  | B |
| NU | 324 | E | NJ | 324 | E | NUP | 324 | E | N | 324 | E | - |  |  | - |  |  | - |  |  |  |
| E | 1324 | U | L | 1324 | U | LP | 1324 | U | U | 1324 | E | U | 1324 | L | E | 1324 | B | U | 1324 |  | B |
| NU | 2324 | E | NJ | 2324 | E | NUP | 2324 | E | N | 2324 | E | - |  |  | - |  |  | - |  |  |  |
| E | 5324 | U | L | 5324 | U | LP | 5324 | U | U | 5324 | E | U | 5324 | L | E | 5324 | B | U | 5324 |  | B |


| E 1026 |  |  | 1026 | U |  | 1026 | U |  | 1026 | E |  | 1026 |  | - |  |  | - |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E 5026 U |  | L | 5026 | U | LP | 5026 | U |  | 5026 | E |  | 5026 |  |  | - |  | - |  |  |
| E 1226 |  | L | 1226 | U | LP | 1226 | U | U | 1226 | E |  | 1226 | L |  | 1226 | B |  | 1226 | B |
| E 5226 | U | L | 5226 | U | LP | 5226 | U | U | 5226 | E |  | 5226 | L |  | 5226 | B |  | 5226 | B |
| NU 326 | E | NJ | 326 | E | NUP | 326 | E | N | 326 | E |  | - |  |  | - |  |  | - |  |
| E 1326 U |  | L | 1326 | U | LP | 1326 | U | U | 1326 | E |  | 1326 | L |  | - |  |  | - |  |
| NU 2326 |  | NJ | 2326 | E | NUP | 2326 | E |  | 2326 | E |  | - |  |  | - |  |  | - |  |
| E 5326 | U | L | 5326 | U | LP | 5326 | U | U | 5326 | E |  | 5326 | L |  | - |  |  | - |  |


| E 1028 U |  |  | 1028 | U | LP | 1028 | U | U | 1028 | E | U | 1028 |  |  | - |  |  | - |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E 5028 | U | L | 5028 | U | LP | 5028 | U | U | 5028 | E | U | 5028 | L |  | - |  |  | - |  |
| MUC 128 |  | MUL |  |  | MU | 128 |  | MCS | 128 |  | ML | 128 |  |  | - |  |  | - |  |
| MUC 5128 |  | MUL | 5128 |  | MU | 5128 |  | MCS | 5128 |  | ML | 5128 |  |  | - |  |  | - |  |
| E 1228 U | U | L | 1228 | U | LP | 1228 | U | U | 1228 | E | U | 1228 | L |  | 1228 | B | U | 1228 | B |
| E 5228 U | U | L | 5228 | U | LP | 5228 | U | U | 5228 | E | U | 5228 | L | E | 5228 | B | U | 5228 | B |
| NU 328 | E | NJ | 328 | E | NUP | 328 | E | N | 328 | E |  | - |  |  | - |  |  | - |  |
| E 1328 | U | L | 1328 | U | LP | 1328 | U | U | 1328 | E | U | 1328 |  |  | - |  |  | - |  |



| BORE |  | OUTSIDE <br> DIAMETER |  | WIDTH |  | RADIUS |  | BASIC DYNAMIC CAPACITY | BASIC STATIC CAPACITY | $\begin{aligned} & \hline \text { FLANGE } \\ & \text { O.D. } \\ & \text { INNER } \\ & \text { RACE } \end{aligned}$ | O.D. INNER RACE | $\begin{aligned} & \hline \text { FLANGE } \\ & \text { I.D. } \\ & \text { OUTER } \\ & \text { RACE } \end{aligned}$ | I.D. OUTER RACE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B |  | D |  | W |  | rs | rh | POUNDS | POUNDS | Fi | Ri | Fo | Ro |
| MM | INCH | MM | INCH | MM | INCH | MM |  |  |  | MM |  |  |  |
| 140 | 5.5118 | 300 | 11.8110 | 102.0 | 4.0157 | 4.0 | 4.0 | 208,730 | 285,920 | 196.0 | 180.0 | 247.2 | 260.0 |
|  | 5.5118 | 300 | 11.8110 | 114.3 | 4.5000 | 7.9 | 3.2 | 254,510 | 379,890 | 197.0 | 181.7 | 244.3 | 258.0 |


| 150 | 5.9055 | 225 | 8.8583 | 56.0 | 2.2047 | 4.0 | 2.0 | 87,140 | 148,930 | 176.2 | 168.7 | 198.9 | 206.3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5.9055 | 235 | 9.2520 | 38.0 | 1.4961 | 2.0 | 2.0 | 45,500 | 64,500 | 182.4 | 174.6 | 205.6 | 212.7 |
|  | 5.9055 | 235 | 9.2520 | 66.7 | 2.6250 | 2.0 | 2.0 | 97,020 | 170,760 | 182.4 | 174.6 | 205.6 | 212.7 |
|  | 5.9055 | 270 | 10.6299 | 45.0 | 1.7717 | 2.5 | 2.5 | 91,030 | 116,950 | 191.6 | 179.4 | 228.5 | 239.7 |
|  | 5.9055 | 270 | 10.6299 | 45.0 | 1.7717 | 6.4 | 2.5 | 89,920 | 115,860 | 193.0 | 181.5 | 231.0 | 241.7 |
|  | 5.9055 | 270 | 10.6299 | 88.9 | 3.5000 | 6.4 | 2.5 | 196,160 | 315,810 | 193.0 | 181.5 | 231.0 | 241.7 |
|  | 5.9055 | 270 | 10.6299 | 177.8 | 7.0000 | 6.4 | 2.5 | 336,310 | 631,620 | 193.0 | 181.5 | 231.0 | 241.7 |
|  | 5.9055 | 320 | 12.5984 | 65.0 | 2.5591 | 3.0 | 3.0 | 176,570 | 217,890 | 192.8 | 190.0 | 264.4 | 280.0 |
|  | 5.9055 | 320 | 12.5984 | 123.8 | 4.8750 | 7.9 | 3.2 | 302,480 | 439,630 | 208.5 | 190.9 | 263.3 | 279.1 |
| 160 | 6.2992 | 240 | 9.4488 | 38.0 | 1.4961 | 4.0 | 2.0 | 57,650 | 88,500 | 188.8 | 181.2 | 212.7 | 219.3 |
|  | 6.2992 | 240 | 9.4488 | 60.0 | 2.3622 | 4.0 | 2.0 | 96,790 | 172,280 | 188.8 | 181.2 | 212.7 | 219.3 |
|  | 6.2992 | 250 | 9.8425 | 40.0 | 1.5748 | 2.0 | 2.0 | 51,730 | 73,120 | 192.3 | 184.2 | 218.3 | 225.4 |
|  | 6.2992 | 250 | 9.8425 | 73.0 | 2.8750 | 2.0 | 2.0 | 111,310 | 195,850 | 192.3 | 184.2 | 218.3 | 225.4 |
|  | 6.2992 | 290 | 11.4173 | 48.0 | 1.8898 | 2.5 | 2.5 | 100,420 | 130,890 | 206.0 | 193.7 | 245.2 | 257.2 |
|  | 6.2992 | 290 | 11.4173 | 48.0 | 1.8898 | 6.4 | 2.5 | 96,890 | 125,040 | 205.9 | 193.9 | 243.8 | 257.4 |
|  | 6.2992 | 290 | 11.4173 | 98.4 | 3.8750 | 6.4 | 2.5 | 208,070 | 334,030 | 205.9 | 193.9 | 243.8 | 257.4 |
|  | 6.2992 | 290 | 11.4173 | 196.9 | 7.7500 | 6.4 | 2.5 | 356,730 | 668,050 | 205.9 | 193.9 | 243.8 | 257.4 |
|  | 6.2992 | 340 | 13.3858 | 68.0 | 2.6772 | 9.5 | 3.2 | 160,630 | 198,180 | 223.5 | 205.9 | 278.3 | 294.1 |
|  | 6.2992 | 340 | 13.3858 | 68.0 | 2.6772 | 3.0 | 3.0 | 182,060 | 222,200 | 220.5 | 203.2 | 283.7 | 298.5 |


| 170 | 6.6929 | 260 | 10.2362 | 42.0 | 1.6535 | 4.7 | 2.0 | 77,730 | 122,150 | 202.1 | 194.9 | 227.1 | 238.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 6.6929 | 260 | 10.2362 | 67.0 | 2.6378 | 4.7 | 2.0 | 123,910 | 222,460 | 202.1 | 194.9 | 227.1 | 238.1 |
|  | 6.6929 | 265 | 10.4331 | 42.0 | 1.6535 | 2.5 | 2.5 | 66,240 | 92,720 | 203.2 | 193.7 | 231.8 | 241.3 |
|  | 6.6929 | 265 | 10.4331 | 76.2 | 3.0000 | 2.5 | 2.5 | 132,730 | 226,590 | 203.2 | 193.7 | 231.8 | 241.3 |
|  | 6.6929 | 310 | 12.2047 | 52.0 | 2.0472 | 6.4 | 3.2 | 115,140 | 151,540 | 219.1 | 205.5 | 261.5 | 273.6 |
|  | 6.6929 | 310 | 12.2047 | 104.8 | 4.1250 | 6.4 | 3.2 | 236,190 | 381,670 | 219.1 | 205.5 | 261.5 | 273.6 |
|  | 6.6929 | 360 | 14.1732 | 72.0 | 2.8346 | 3.0 | 3.0 | 182,030 | 225,300 | 235.0 | 219.1 | 298.5 | 314.3 |
|  | 6.6929 | 360 | 14.1732 | 139.7 | 5.5000 | 9.5 | 3.2 | 369,100 | 552,190 | 236.0 | 216.7 | 295.7 | 313.3 |
| 180 | 7.0866 | 280 | 11.0236 | 46.0 | 1.8110 | 4.7 | 2.0 | 96,180 | 150,460 | 215.3 | 205.6 | 244.6 | 254.4 |
|  | 7.0866 | 280 | 11.0236 | 74.0 | 2.9134 | 4.7 | 2.0 | 152,040 | 271,090 | 215.3 | 205.6 | 244.6 | 254.4 |
|  | 7.0866 | 280 | 11.0236 | 44.0 | 1.7323 | 2.5 | 2.0 | 75,240 | 106,310 | 214.4 | 204.8 | 245.9 | 255.6 |
|  | 7.0866 | 280 | 11.0236 | 82.6 | 3.2500 | 2.5 | 2.5 | 156,010 | 274,490 | 214.4 | 204.8 | 245.9 | 255.6 |
|  | 7.0866 | 320 | 12.5984 | 52.0 | 2.0472 | 3.0 | 3.0 | 107,920 | 148,990 | 235.0 | 222.3 | 274.1 | 285.8 |
|  | 7.0866 | 320 | 12.5984 | 52.0 | 2.0472 | 6.4 | 3.2 | 114,690 | 152,620 | 229.9 | 216.3 | 272.3 | 284.4 |
|  | 7.0866 | 320 | 12.5984 | 108.0 | 4.2500 | 6.4 | 3.2 | 235,260 | 384,400 | 229.9 | 216.3 | 272.3 | 284.4 |
|  | 7.0866 | 380 | 14.9606 | 75.0 | 2.9528 | 3.0 | 3.0 | 191,500 | 243,780 | 250.8 | 231.8 | 309.9 | 327.0 |


| 190 | 7.4803 | 290 | 11.4173 | 46.0 | 1.8110 | 4.7 | 2.5 | 95,630 | 151,200 | 226.9 | 215.6 | 26.3 | 264.4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 7.4803 | 290 | 11.4173 | 75.0 | 2.9528 | 4.7 | 2.5 | 151,160 | 272,430 | 226.9 | 215.6 | 26.3 | 264.4 |
|  | 7.4803 | 290 | 11.4173 | 85.7 | 3.3750 | 2.5 | 2.5 | 165,630 | 299,510 | 229.2 | 219.1 | 259.7 | 269.9 |

[^0]

| INNER RACE SEPARABLE BOTH DIRECTIONS | $\begin{aligned} & \text { INNER RACE } \\ & \text { SEPARABLE } \\ & \text { ONE DIRECTION } \end{aligned}$ | TWO PIECE INNER RACE FOUR FLANGE DESIGN | OUTER RACE SEPARABLE BOTH DIRECTIONS | $\begin{aligned} & \text { OUTER RACE } \\ & \text { SEPARABLE } \\ & \text { ONE DIRECTION } \end{aligned}$ | INNER RACE SEPARABLE BOTH DIRECTIONS | NONSEPARABLE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NU 2328 E | NJ 2328 E | NUP 2328 E | N 2328 E | - | - | - |
| E 5328 U | L 5328 U | LP 5328 U | U 5328 E | U 5328 L | - | - |


| E 5030 U | L 5030 U | LP 5030 U | U 5030 E | U 5030 L | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MUC 130 | MUL 130 | MU 130 | MCS 130 | ML 130 | - | - |
| MUC 5130 | MUL 5130 | MU 5130 | MCS 5130 | ML 5130 | - | - |
| MUC 230 | MUL 230 | MU 230 | MCS 230 | ML 230 | - | - |
| E 1230 U | L 1230 U | LP 1230 U | U 1230 E | U 1230 L | E 1230 B | U 1230 B |
| E 5230 U | L 5230 U | LP 5230 U | U 5230 E | U 5230 L | E 5230 B | U 5230 B |
| - | - | - | - | - | E 6230 B |  |
| MUC 330 | MUL 330 | MU 330 | MCS 330 | ML 330 | - | - |
| E 5330 U | L 5330 U | LP 5330 U | U 5330 E | U 5330 L | - | - |


| E 1032 U | L 1032 U | LP 1032 U | U 1032 E | U 1032 L | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E 5032 U | L 5032 U | LP 5032 U | U 5032 E | U 5032 L | - | - |
| MUC 132 | MUL 132 | MU 132 | MCS 132 | ML 132 | - | - |
| MUC 5132 | MUL 5132 | MU 5132 | MCS 5132 | ML 5132 | - | - |
| MUC 232 | MUL 232 | MU 232 | MCS 232 | ML 232 | - | - |
| E 1232 U | L 1232 U | LP 1232 U | U 1232 E | U 1232 L | - | - |
| E 5232 U | L 5232 U | LP 5232 U | U 5232 E | U 5232 L | - | - |
| - | - | - | - | - | E 6232 B | - |
| E 1332 U | L 1332 U | LP 1332 U | U 1332 E | U 1332 L | - | - |
| MUC 332 | MUL 332 | MU 332 | MCS 332 | ML 332 | - | - |




| E 1038 U | L 1038 U | LP 1038 U | U 1038 E | U 1038 L | - | - |
| ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| E 5038 U | L 5038 U | LP 5038 U | U 5038 E | U 5038 L | - |  |
| MUC 5138 | MUL 5138 | MU 5138 | MCS 5138 | ML 5138 | - | - |



| BORE |  | OUTSIDE <br> DIAMETER |  | WIDTH |  | RADIUS |  | BASIC DYNAMIC CAPACITY | BASIC STATIC CAPACITY | FLANGE O.D. INNER RACE | O.D. INNER RACE | $\begin{aligned} & \hline \text { FLANGE } \\ & \text { I.D. } \\ & \text { OUTER } \\ & \text { RACE } \end{aligned}$ | $\begin{aligned} & \text { I.D. } \\ & \text { OUTER } \end{aligned}$ RACE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B |  | D |  | W |  | rs | rh | POUNDS | POUNDS | Fi | Ri | Fo | Ro |
| MM | INCH | MM | INCH | MM | INCH | MM |  |  |  | MM |  |  |  |
| 190 | 7.4803 | 300 | 11.8110 | 46.0 | 1.8110 | 2.5 | 2.5 | 79,890 | 117,280 | 229.2 | 219.1 | 259.7 | 269.9 |
|  | 7.4803 | 340 | 13.3858 | 114.3 | 4.5000 | 7.9 | 3.2 | 279,880 | 471,260 | 243.3 | 228.9 | 288.2 | 301.0 |
|  | 7.4803 | 400 | 15.7480 | 78.0 | 3.0709 | 4.0 | 4.0 | 206,500 | 260,860 | 262.9 | 244.5 | 303.4 | 346.1 |
| 200 | 7.8740 | 310 | 12.2047 | 82.0 | 3.2283 | 4.7 | 2.0 | 174,940 | 309,140 | 238.6 | 227.7 | 271.6 | 282.3 |
|  | 7.8740 | 320 | 12.5984 | 48.0 | 1.8898 | 2.5 | 2.5 | 96,410 | 140,260 | 243.5 | 231.8 | 278.9 | 288.9 |
|  | 7.8740 | 320 | 12.5984 | 88.9 | 3.5000 | 2.5 | 2.5 | 189,780 | 335,060 | 243.5 | 231.8 | 278.9 | 288.9 |
|  | 7.8740 | 360 | 14.1732 | 58.0 | 2.2835 | 7.9 | 3.2 | 139,020 | 187,210 | 257.4 | 242.2 | 304.9 | 318.5 |
|  | 7.8740 | 360 | 14.1732 | 120.7 | 4.7500 | 7.9 | 3.2 | 300,080 | 503,470 | 257.4 | 242.2 | 304.9 | 318.5 |
|  | 7.8740 | 420 | 16.5354 | 165.1 | 6.5000 | 4.0 | 4.0 | 471,950 | 766,680 | 280.5 | 260.4 | 346.1 | 362.0 |
| 210 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 8.2677 | 340 | 13.3858 | 50.0 | 1.9685 | 2.5 | 2.5 | 115,120 | 166,570 | 257.0 | 244.5 | 295.1 | 308.0 |
|  | 8.2677 | 340 | 13.3858 | 95.3 | 3.7500 | 2.5 | 2.5 | 215,040 | 371,970 | 257.0 | 244.5 | 295.1 | 308.0 |
|  | 8.2677 | 380 | 14.9606 | 62.0 | 2.4409 | 3.0 | 3.0 | 150,000 | 211,020 | 276.5 | 260.4 | 323.9 | 336.6 |
|  | 8.2677 | 380 | 14.9606 | 127.0 | 5.0000 | 9.5 | 3.2 | 351,140 | 594,440 | 270.1 | 253.6 | 320.2 | 336.2 |
|  | 8.2677 | 440 | 17.3228 | 84.0 | 3.3071 | 4.0 | 4.0 | 244,640 | 320,240 | 287.8 | 269.9 | 359.9 | 377.8 |
| 220 | 8.6614 | 320 | 13.3858 | 90.0 | 2.9578 | 6.4 | 2.5 | 209,900 | 390,730 | 262.8 | 251.4 | 297.3 | 308.6 |
|  | 8.6614 | 350 | 13.7795 | 98.4 | 3.8750 | 2.5 | 2.5 | 230,200 | 411,020 | 265.4 | 254.0 | 307.0 | 317.5 |
|  | 8.6614 | 400 | 15.7480 | 65.0 | 2.5591 | 3.0 | 3.0 | 167,230 | 232,460 | 286.5 | 269.9 | 336.6 | 352.4 |
|  | 8.6614 | 400 | 15.7480 | 65.0 | 2.5591 | 9.5 | 3.2 | 186,510 | 253,980 | 283.2 | 265.5 | 342.4 | 354.4 |
|  | 8.6614 | 400 | 15.7480 | 133.4 | 5.2500 | 9.5 | 3.2 | 384,180 | 643,130 | 283.2 | 265.5 | 342.4 | 354.4 |
| 230 | 9.0551 | 370 | 14.5669 | 53.0 | 4.0000 | 2.5 | 2.5 | 134,730 | 196,180 | 280.2 | 266.7 | 323.9 | 336.6 |
|  | 9.0551 | 370 | 14.5669 | 101.6 | 2.0866 | 2.5 | 2.5 | 244,420 | 421,910 | 280.2 | 266.7 | 323.9 | 336.6 |
|  | 9.0551 | 420 | 16.5354 | 69.0 | 2.7165 | 3.0 | 3.0 | 185,620 | 256,200 | 299.6 | 282.6 | 354.5 | 371.5 |
| 240 | 9.4488 | 390 | 15.3543 | 55.0 | 2.1654 | 2.5 | 2.5 | 154,990 | 223,920 | 291.6 | 277.8 | 342.4 | 354.0 |
|  | 9.4488 | 390 | 15.3543 | 108.0 | 4.2500 | 2.5 | 2.5 | 270,030 | 457,170 | 291.6 | 277.8 | 342.4 | 354.0 |
|  | 9.4488 | 440 | 17.3228 | 72.0 | 2.8346 | 3.0 | 3.0 | 207,890 | 286,580 | 309.1 | 293.7 | 373.6 | 388.9 |
|  | 9.4488 | 440 | 17.3228 | 146.1 | 5.7500 | 9.5 | 3.2 | 489,340 | 824,720 | 311.6 | 291.2 | 374.9 | 393.1 |
|  | 9.4488 | 500 | 19.6850 | 95.0 | 3.7402 | 4.0 | 4.0 | 298,100 | 397,460 | 328.4 | 308.0 | 408.3 | 428.6 |


| 250 | 9.8425 | 410 | 16.1417 | 57.0 | 4.3750 | 3.0 | 3.0 | 159,640 | 236,660 | 308.7 | 293.7 | 354.1 | 369.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 9.8425 | 410 | 16.1417 | 111.1 | 2.2441 | 3.0 | 3.0 | 288,110 | 505,580 | 308.7 | 293.7 | 354.1 | 369.9 |
|  | 9.8425 | 520 | 20.4724 | 196.9 | 7.7500 | 4.0 | 4.0 | 613,610 | 1,022,650 | 354.3 | 330.2 | 431.8 | 450.9 |
| $260$ | 10.2362 | 430 | 16.9291 | 59.0 | 2.3228 | 3.0 | 3.0 | 164,310 | 249,260 | 322.8 | 308.0 | 372.4 | 384.2 |
|  | 10.2362 | 430 | 16.9291 | 114.3 | 4.5000 | 3.0 | 3.0 | 306,710 | 556,100 | 322.8 | 308.0 | 372.4 | 384.2 |
|  | 10.2362 | 480 | 18.8976 | 158.8 | 6.2500 | 4.0 | 4.0 | 469,750 | 802,070 | 336.7 | 320.7 | 406.1 | 422.3 |
|  | 10.2362 | 540 | 21.2598 | 102.0 | 4.0157 | 5.0 | 5.0 | 345,270 | 477,430 | 365.3 | 342.9 | 445.8 | 469.9 |
| 280 | 11.0236 | 460 | 18.1102 | 123.8 | 4.8750 | 3.0 | 3.0 | 354,840 | 648,750 | 346.6 | 330.2 | 398.8 | 412.8 |
|  | 11.0236 | 500 | 19.6850 | 165.1 | 6.5000 | 9.5 | 4.0 | 635,200 | 1,111,320 | 355.6 | 333.0 | 427.2 | 447.3 |
|  | 11.0236 | 580 | 22.8346 | 215.9 | 8.5000 | 12.7 | 5.0 | 951,160 | 1,437,800 | 368.0 | 339.9 | 487.4 | 517.7 |

## Notes:

1. Some configurations may not be in production, check for availability
2. Actual retainer options may vary, check for retainer design availability
3. Corners rs \& rh are the maximum shaft and housing fillet radius that can be cleared


| INNER RACE SEPARABLE BOTH DIRECTIONS | INNER RACE SEPARABLE ONE DIRECTION | TWO PIECE INNER RACE FOUR FLANGE DESIGN | OUTER RACE SEPARABLE BOTH DIRECTIONS | OUTER RACE SEPARABLE ONE DIRECTION | INNER RACE SEPARABLE BOTH DIRECTIONS | NONSEPARABLE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MUC 138 | MUL 138 | MU 138 | MCS 138 | ML 138 | - | - |
| E 5238 U | L 5238 U | LP 5238 U | U 5238 E | U 5238 L | - | - |
| MUC 338 | MUL 338 | MU 338 | MCS 338 | ML 338 | - | - |


| E 5040 U | L 5040 U | LP 5040 U | U 5040 E | U 5040 L | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MUC 140 | MUL 140 | MU 140 | MCS 140 | ML 140 | - | - |
| MUC 5140 | MUL 5140 | MU 5140 | MCS 5140 | ML 5140 | - | - |
| E 1240 U | L 1240 U | LP 1240 U | U 1240 E | U 1240 L | - | - |
| E 5240 U | L 5240 U | LP 5240 U | U 5240 E | U 5240 L | - | - |
| E 5340 U | L 5340 U | LP 5340 U | U 5340 E | U 5340 L | - | - |


| MUC 142 | MUL 142 | MU 142 | MCS 142 | ML 142 | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MUC 5142 | MUL 5142 | MU 5142 | MCS 5142 | ML 5142 | - | - |
| MUC 242 | MUL 242 | MU 242 | MCS 242 | ML 242 | - | - |
| E 5242 U | L 5242 U | LP 5242 U | U 5242 E | U 5242 L | - | - |
| MUC 342 | MUL 342 | MU 342 | MCS 342 | ML 342 | - | - |


| E 5044 U | L 5044 U | U | LP | 5044 | U | U | 5044 | E | U | 5044 | L | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MUC 5144 | MUL 5144 |  | MU | 5144 |  | MCS | 5144 |  | ML | 5144 |  | - | - |
| MUC 244 | MUL 244 |  | MU | 244 |  | MCS | 244 |  | ML | 244 |  | - | - |
| E 1244 U | L 1244 U | U | LP | 1244 | U | U | 1244 | E |  | 1244 | L | - | - |
| E 5244 U | L 5244 U | U | LP | 5244 | U | U | 5244 | E | U | 5244 | L | - | - |


| MUC 146 | MUL 146 | MU 146 | MCS 146 | ML 146 | - |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| MUC 5146 | MUL 5146 | MU 5146 | MCS 5146 | ML 5146 | - |
| MUC 246 | MUL 246 | MU 246 | MCS 246 | ML 246 | - |


| MUC 148 | MUL 148 | MU 148 | MCS 148 | ML 148 | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MUC 5148 | MUL 5148 | MU 5148 | MCS 5148 | ML 5148 | - | - |
| MUC 248 | MUL 248 | MU 248 | MCS 248 | ML 248 | - | - |
| E 5248 U | L 5248 U | LP 5248 U | U 5248 E | U 5248 L | - | - |
| MUC 348 | MUL 348 | MU 348 | MCS 348 | ML 348 | - | - |


| MUC 150 | MUL 150 | MU 150 | MCS 150 | ML 150 | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MUC 5150 | MUL 5150 | MU 5150 | MCS 5150 | ML 5150 | - | - |
| E 5350 U | L 5350 U | LP 5350 U | U 5350 E | U 5350 L | - | - |


| MUC 152 | MUL 152 | MU 152 | MCS 152 | ML 152 | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MUC 5152 | MUL 5152 | MU 5152 | MCS 5152 | ML 5152 | - | - |
| E 5252 U | L 5252 U | LP 5252 U | U 5252 E | U 5252 L | - | - |
| MUC 352 | MUL 352 | MU 352 | MCS 352 | ML 352 | - | - |


| MUC 5156 | MUL 5156 | MU 5156 |  | MCS 5156 |  | ML 5156 |  | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E 5256 U | L 5256 U | LP 5256 | U | U 5256 | E | U 5256 | L | - | - |
| E 5356 U | L 5356 U | LP 5356 | U | U 5356 | E | U 5356 | L | - | - |



| BORE |  | OUTSIDE <br> DIAMETER |  | WIDTH |  | RADIUS |  | BASIC DYNAMIC CAPACITY | BASIC STATIC CAPACITY | $\begin{gathered} \hline \text { FLANGE } \\ \text { O.D. } \\ \text { INNER } \\ \text { RACE } \end{gathered}$ |  | ```FLANGE I.D. OUTER RACE``` | I.D. OUTER RACE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B |  | D |  | W |  | rs | rh | POUNDS | POUNDS | Fi | Ri | Fo | Ro |
| MM | INCH | MM | INCH | MM | INCH | MM |  |  |  | MM |  |  |  |
| 300 | 11.8110 | 480 | 18.8970 | 127.0 | 5.0000 | 8.0 | 3.2 | 383,930 | 690,680 | 360.7 | 344.5 | 419.0 | 433.4 |
|  | 11.8110 | 540 | 21.2590 | 85.0 | 3.3465 | 12.7 | 4.0 | 381,750 | 486,330 | 366.6 | 343.8 | 470.3 | 496.2 |
| 320 | 12.5984 | 500 | 19.6850 | 71.0 | 2.7953 | 3.0 | 3.0 | 219,370 | 341,900 | 381.3 | 363.5 | 437.1 | 452.4 |
|  | 12.5984 | 500 | 19.6850 | 130.2 | 5.1250 | 4.0 | 3.0 | 394,850 | 727,920 | 381.3 | 363.5 | 437.1 | 452.4 |
| 340 | 13.3850 | 530 | 20.8661 | 133.4 | 5.2500 | - | - | 324,290 | 645,580 | 415.4 | 399.3 | 462.6 | 475.5 |
| 425 | 16.7480 | 610 | 24.0157 | 146.1 | 5.7500 | - | - | 465,750 | 916,530 | 469.9 | 453.7 | 532.8 | 549.0 |
| 440 | 17.3228 | 660 | 25.9843 | 158.8 | 6.2500 | - | - | 486,790 | 1,002,350 | 520.8 | 503.7 | 582.8 | 599.0 |

## Notes:

1. Some configurations may not be in production, check for availability
2. Actual retainer options may vary, check for retainer design availability
3. Corners is \& rh are the maximum shaft and housing fillet radius that can be cleared


| INNER RACE <br> SEPARABLE <br> BOTH <br> DIRECTIONS | INNER RACE <br> SEPARABLE <br> ONE DIRECTION | TWO PIECE <br> INNER RACE <br> FOUR FLANGE <br> DESIGN | OUTER RACE <br> SEPARABLE <br> BOTH DIRECTIONS | OUTER RACE <br> SEPARABLE <br> ONE DIRECTION | INNER RACE <br> SEPARABLE <br> BOTH DIRECTIONS | NONSEPARABLE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| MUC 164 | MUL 164 | MU 164 | MCS 164 | ML 164 | - |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| MUC 5164 | MUL 5164 | MU 5164 | MCS 5164 | ML 5164 | - |
| MUC 5168 | MUL 5168 | MU 5168 | MCS 5168 | ML 5168 | - |
|  |  |  |  |  |  |
| MUC 5180 | MUL 5180 | MU 5180 | MCS 5180 | ML 5180 | - |
| MUC 5188 | MUL 5188 | MU 5188 | MCS 5188 | ML 5188 | - |



Rolling Mill Runout Table Applications Line Shaft and Table Roll Support



Rotary Vane Compressor


DC Electric Motor

## $\boldsymbol{R}_{\text {ROLLWAS }}$ <br> Thrust Bearings...

The ROLLWAY offering is one of the most complete lines of standard and engineered roller thrust bearings. Our standard catalog contains inch series cylindrical roller, tapered and multi-stage tandem thrust bearings. We understand the uniqueness of thrust bearing applications and have designed hundreds of custom bearings to solve the most challenging applications.


## Designed and Built to Solve Thrust Application Problems...

- Roller thrust bearings for high speed applications.
- Thrust bearings for high temperature applications.
- Engineered sizes up to 42 " outside diameter.
- Designs requiring anti-rotation features on the plates.
- Designs requiring lifting holes.
- Thrust bearings with integral radial roller bearings.

The following section details the design features of our standard product offering.

## Keep in mind....

A Custom Engineered Solution Is Just A Phone Call Away.


CYLINDRICAL ROLLER THRUST TYPES

## Cylindrical Roller Thrust

## Inch Series

The ROLLWAY inch series thrust bearings are a simply constructed thrust bearing of high capacity. These bearings are designed to support thrust loads (load parallel to the axis of rotation) at relatively high speeds. There are three basic styles of inch series thrust bearings:

- Single Acting - supports thrust load in one direction.
- Aligning - accepts an initial static misalignment of no more than $3^{\circ}$.
- Double Acting - supports thrust loads in both directions.



## Shaft Plate

Bore is precision ground for a line to loose fit on shaft. The O.D. has a turned finish and is smaller than the housing plate's O.D.

Roller Assembly
Machined brass roller riding cage. Rollers are matched to .0001".

Housing Plate
O.D. is precision ground for a line to loose fit in housing bore. The I.D. has a turned finish and is larger than the shaft plate's I.D.

## All three types are made from the same basic components.

## Basic Bearing Design... Thrust Bearing Components

## Plates and Rolling Elements...

The plates and rollers are made from either through-hardened or carburizing grade steel with hardness to Rockwell (Rc) 58-63. Upon request we can manufacture these components from CEVM or VIMVAR grades of material and M50 tool steel for high temperature applications.

All thrust plates are accurately ground for flatness and parallelism of the roller riding and backing surfaces. The contact surfaces of the plates are superfinished to provide for long life. Locating diameters are ground to obtain an accurate fit on the shaft or in the housing.

All rolling elements are precision ground to provide even distribution of load over the contact surfaces. The rollers are all crowned thus permitting unmodified use of the ABMA's capacity formula. Roller crowning reduces the edge stresses between the roller and the thrust plates.

## Roller and Retainer Assemblies...

ROLLWAY Thrust bearing retainers are machined from centrifugally cast brass. The retainers for all cylindrical roller thrust bearings are designed to be roller riding. The contoured roller pockets are accurately machined at right angles to the thrust force which will be applied to the bearing. The rollers are retained in the assembly by a steel ring pinned to the outside diameter of the retainer. It should be noted that the ROLLWAY design has a sphered roller end which rides against the steel retaining ring for reduced wear (the center of the contact point has zero velocity vs the higher velocity that results from a flat ended roller contacting the ring).

## Bearing Classes...

Cylindrical roller thrust bearings are divided into two basic classes: medium ( 600 series) and heavy ( 700 series). The medium series has a smaller cross section and the retainer typically has only one roller per roller pocket. The heavy series has a larger cross section and the retainer typically has more than one roller per roller pocket.

## Thrust Bearing Types and Styles...

## Inch Series - Single Acting

The single acting bearing is the most popular thrust bearing of the inch series. The bearing is often referred to as a "three piece thrust bearing". One of the thrust plates is stationary with respect to the shaft and is ground in the bore for an accurate fit on the shaft. The
 roller assembly is located by the shaft and its inside diameter is machined to provide the correct operating clearance. The second thrust plate is stationary with the housing and is ground on the outside diameter for an accurate fit in the housing. The non-locating diameters of both thrust plates are specially designed to allow lubricant flow.

The sizes range from 1 to 22 inches I.D. and 2.125 to 34 inches O.D. with dynamic capacities from 10,000 lbs. to $1,620,000 \mathrm{lbs}$. These bearings are used in a variety of applications such as extruder gear drives, pumps, crane hook swivels and machine tools.

## Design Variations Of The Inch Series Thrust Bearing...

There are standard design variations of the inch series thrust bearing. Each design is based on a standard single acting inch series thrust bearing and has special added components to modify its function.

## "AT" Aligning Type

The aligning style design replaces the housing plate with aligning plates. The aligning plates are matched plates, one convex and one concave, that all will correct for $3^{\circ}$ initial static misalignment. These aligning plates are not designed for applications requiring dynamic aligning capabilities. They are designed to correct an initial misalignment prior to full loading. The concave plate (housing plate)
 is precision ground but not hardened.

The standard "AT" type is recommended for vertical shaft applications. Where the alignment feature is required in some horizontal shaft applications, the convex aligning plate may ride on the shaft and the plate should be modified to provide a satisfactory bearing surface in the bore. This is usually achieved by the installation of a brass bushing into the bore of the plate.

## THRUST BEARINGS

CYLINDRICAL ROLLER THRUST TYPES

## Thrust Bearing Types and Styles...

## Crane Hook Thrust Bearings

Crane Hook Bearings are similar to the single acting inch series but are specifically designed for crane hooks or similar applications where heavy thrust loads and low speeds of rotation are encountered. Crane Hook Bearings are simply single acting thrust
 bearing supplied with a weathershed. The weathershed is a steel band pressed on to the rotating plate extending to the middle of the stationary plate forming a shield to protect the roller assembly. The weathersheds are supplied with or without grease fittings.

This type of bearing undergoes static loading in normal applications. Our static capacities are based on a total permanent deformation of .0002 inch per inch of roller diameter and is not the ABMA basic capacity.


## "DT" Double Acting Thrust

The "DT" type thrust bearing is a double acting thrust bearing which will withstand reversal in the direction of the load at normal speeds of rotation. The center thrust plate and sleeve must be keyed to the shaft or clamped tightly between the shaft shoulders to prevent rotation of the center plate relative to the shaft. The two outer thrust plates are stationary with respect to the housing. There are two roller assemblies on either side of the center thrust plate. The center plate drives the roller assembly corresponding to the direction of the thrust load.


## "DAT" Aligning, Double Acting Thrust

This bearing is basically a combination of the "DT" type and the "AT" type. The bearing is designed to take reversals in thrust load and correct for initial static misalignment up to $3^{\circ}$.


## "SDT" Simplified Double Acting Thrust

This bearing is similar in concept to the "DT" double acting type except the design has been simplified to only one roller assembly and two thrust plates. With the load in one direction, one of the thrust plates is stationary with respect to the housing and the other
 thrust plate rotates. When the direction of the load is reversed, the stationary plate rotates and the rotating plate becomes the stationary plate. To provide necessary clearance for this action, the inner and outer spacer sleeves are made wider than the combined thickness of the thrust plates and roller assembly. This bearing is recommended for applications where the direction of the thrust load changes when the bearing is stationary or rotating at slow speed.

## Nomenclature

The basic numbering system for the thrust bearings is broken into 3 parts; Bearing type designator, Size designator and Variation code.
Example:

## T 625203 <br> Variation Code <br> Size Designator <br> Type Designator

## TYPE DESIGNATOR - Bearing configuration description

T ........... Single acting thrust.
AT ......... Single acting thrust - aligning type.
DT ........ Double acting thrust.
DAT ...... Double acting thrust - aligning type.
SDT ......Double acting thrust - simplified design.
CT ........Single acting thrust - special design for crane hook applications with weathershed.
WCT .....Single acting thrust - special design for crane hook applications with weathershed and grease fitting.

## SIZE DESIGNATOR

Reference catalog for sizes.
VARIATION CODES - Variation codes are divided into two categories: Special and Standard.

## Special variation codes...

201 to 215 \& 240 to 254 are numerically assigned codes that designate the variation from standard (example $201=$ 1st variation, $202=2 n d$ variation, etc.). These bearing code numbers do not in any way reference the modification from standard. Engineering must be contacted for information concerning a particular modification.

## Standard variation codes...

$\mathbf{2 1 6}$ to $\mathbf{2 3 9}$ \& $\mathbf{2 5 5}$ to 299 are code numbers representing standard modifications with the most popular listed below:

- 059 - Brass retainer - this code is obsolete, all standard thrust bearings are supplied with centrifugally cast brass retainers.
- 210 - Roller assembly supplied with hardened steel outer ring.
- 216 - Standard bearing supplied without shaft plate.
- 219 - Tandem bearing design (typically these have been replaced with TAB to TAC bearings).
- 221 - Standard bearing with a brass ring pressed in bore for horizontal shaft applications.
- 226 - Standard bearing supplied with two shaft plates.
- 229 - Same as 219.


## Cylindrical Roller Thrust 600 Series...

- Medium Series Cylindrical Roller Thrust.
- Standard Inch Series.
- Machined Brass Retainers - Standard.
- Crowned Rollers with Sphered Ends.


| Basic Bearing Number | Bore B | Outside <br> Diameter D | Height H | Internal Dimensions |  |  | Housing \& Shaft Fillet R | Est. Weight | Capacity |  | Limiting Speed |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | b | d | f |  |  | $\begin{gathered} \text { dynamic } \\ \mathrm{C} \end{gathered}$ | static Co | grease | oil |
|  | Inches |  |  | Inches |  |  |  |  | Pounds |  | RPM |  |
| T601 | 1.000 | 2.125 | 0.812 | 1.130 | 2.000 | 0.220 | 0.031 | 0.5 | 10,550 | 18,760 | 3,440 | 6,880 |
| T602 | 1.062 | 2.125 | 0.812 | 1.130 | 2.000 | 0.220 | 0.031 | 0.5 | 10,550 | 18,760 | 3,370 | 6,750 |
| T603 | 1.125 | 2.250 | 0.812 | 1.250 | 2.150 | 0.220 | 0.031 | 0.6 | 12,140 | 25,540 | 3,190 | 6,370 |
| T604 | 1.187 | 2.250 | 0.812 | 1.250 | 2.150 | 0.220 | 0.031 | 0.6 | 12,140 | 25,540 | 3,130 | 6,260 |
| T605 | 1.250 | 2.375 | 0.812 | 1.430 | 2.310 | 0.220 | 0.031 | 0.6 | 13,280 | 28,380 | 2,970 | 5,930 |
| T606 | 1.312 | 2.375 | 0.812 | 1.430 | 2.310 | 0.220 | 0.031 | 0.6 | 13,280 | 28,380 | 2,920 | 5,830 |
| T607 | 1.375 | 2.875 | 0.812 | 1.630 | 2.790 | 0.220 | 0.031 | 1 | 17,470 | 47,800 | 2,530 | 5,060 |
| T608 | 1.437 | 2.875 | 0.812 | 1.630 | 2.790 | 0.220 | 0.031 | 1 | 17,470 | 47,800 | 2,490 | 4,990 |
| T609 | 1.500 | 3.000 | 0.812 | 1.750 | 2.900 | 0.220 | 0.031 | 1 | 18,730 | 52,140 | 2,390 | 4,780 |
| T610 | 1.562 | 3.000 | 0.812 | 1.750 | 2.900 | 0.220 | 0.031 | 1 | 18,730 | 52,140 | 2,360 | 4,710 |
| T611 | 1.625 | 3.250 | 1.000 | 1.880 | 3.150 | 0.250 | 0.062 | 1.5 | 25,620 | 67,380 | 2,210 | 4,410 |
| T612 | 1.687 | 3.250 | 1.000 | 1.880 | 3.150 | 0.250 | 0.062 | 1.5 | 25,620 | 67,380 | 2,180 | 4,350 |
| T613 | 1.750 | 3.375 | 1.000 | 2.030 | 3.300 | 0.250 | 0.062 | 1.6 | 27,670 | 74,120 | 2,100 | 4,200 |
| T614 | 1.812 | 3.375 | 1.000 | 2.030 | 3.300 | 0.250 | 0.062 | 1.6 | 27,670 | 74,120 | 2,070 | 4,140 |
| T615 | 1.875 | 3.500 | 1.000 | 2.130 | 3.410 | 0.250 | 0.062 | 1.7 | 27,760 | 74,120 | 2,000 | 4,000 |
| T616 | 1.937 | 3.500 | 1.000 | 2.130 | 3.410 | 0.250 | 0.062 | 1.6 | 27,760 | 74,120 | 1,980 | 3,950 |
| T617 | 2.000 | 3.625 | 1.000 | 2.190 | 3.500 | 0.250 | 0.062 | 1.7 | 27,870 | 74,120 | 1,910 | 3,820 |
| T618 | 2.125 | 3.750 | 1.000 | 2.380 | 3.650 | 0.250 | 0.062 | 1.8 | 28,740 | 80,850 | 1,830 | 3,660 |
| T619 | 2.250 | 3.875 | 1.000 | 2.440 | 3.750 | 0.250 | 0.062 | 1.9 | 32,030 | 87,590 | 1,760 | 3,510 |
| T620 | 2.375 | 4.000 | 1.000 | 2.630 | 3.900 | 0.250 | 0.062 | 2 | 32,250 | 87,590 | 1,690 | 3,370 |
| T621 | 2.500 | 4.125 | 1.000 | 2.670 | 4.000 | 0.250 | 0.062 | 2.1 | 34,180 | 94,330 | 1,620 | 3,250 |
| T622 | 2.625 | 4.343 | 1.000 | 2.880 | 4.220 | 0.250 | 0.062 | 2.3 | 36,150 | 101,070 | 1,540 | 3,090 |
| T623 | 2.750 | 4.468 | 1.000 | 3.060 | 4.340 | 0.250 | 0.062 | 2.4 | 38,350 | 107,800 | 1,490 | 2,980 |
| T624 | 3.000 | 4.718 | 1.000 | 3.250 | 4.590 | 0.250 | 0.062 | 2.6 | 40,510 | 114,540 | 1,390 | 2,790 |
| T625 | 3.250 | 4.968 | 1.000 | 3.500 | 4.840 | 0.250 | 0.062 | 2.7 | 40,770 | 114,540 | 1,310 | 2,620 |
| T626 | 3.500 | 5.218 | 1.000 | 3.750 | 5.090 | 0.250 | 0.062 | 2.9 | 44,350 | 128,020 | 1,230 | 2,470 |

ROLLWAப THRUST BEARINGS

## Cylindrical Roller Thrust 600 Series With Aligning Plates...

- Medium Series Cylindrical Roller Thrust.
- Standard Inch Series.
- Allows for $3^{\circ}$ Initial Static Misalignment.
- Machined Brass Retainers - Standard.
- Crowned Rollers with Sphered Ends.


| Basic Bearing Number | $\begin{gathered} \text { Bore } \\ \text { B } \end{gathered}$ | Outside Diameter D | Height H | Internal Dimensions |  |  |  |  | Housing \& Shaft Fillet R | Est. Weight | Capacity |  | Limiting Speed |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | b | d | f | m | f |  |  | $\begin{gathered} \text { dynamic } \\ \mathrm{C} \end{gathered}$ | static Co | grease | oil |
|  | Inches |  |  | Inches |  |  |  |  |  |  | Pounds |  | RPM |  |
| AT601 | 1.000 | 2.250 | 1.062 | 1.130 | 2.000 | 0.220 | 1.31 | 1.500 | 0.031 | 0.7 | 10,550 | 18,760 | 3,440 | 6,880 |
| AT602 | 1.062 | 2.250 | 1.062 | 1.130 | 2.000 | 0.220 | 1.31 | 1.500 | 0.031 | 0.7 | 10,550 | 18,760 | 3,370 | 6,750 |
| AT603 | 1.125 | 2.375 | 1.062 | 1.250 | 2.150 | 0.220 | 1.44 | 1.750 | 0.031 | 0.8 | 12,140 | 25,540 | 3,190 | 3,370 |
| AT604 | 1.187 | 2.375 | 1.062 | 1.250 | 2.150 | 0.220 | 1.44 | 1.750 | 0.031 | 0.7 | 12,140 | 25,540 | 3,130 | 6,260 |
| AT605 | 1.250 | 2.500 | 1.062 | 1.380 | 2.310 | 0.220 | 1.50 | 1.875 | 0.031 | 0.8 | 13,280 | 28,380 | 2,970 | 5,930 |
| AT606 | 1.312 | 2.500 | 1.062 | 1.380 | 2.310 | 0.220 | 1.63 | 1.875 | 0.031 | 0.8 | 13,280 | 28,380 | 2,920 | 5,830 |
| AT607 | 1.375 | 3.000 | 1.062 | 1.500 | 2.790 | 0.220 | 1.81 | 2.750 | 0.031 | 1.3 | 17,470 | 47,800 | 2,530 | 5,060 |
| AT608 | 1.437 | 3.000 | 1.062 | 1.500 | 2.790 | 0.220 | 1.81 | 2.750 | 0.031 | 1.3 | 17,470 | 47,800 | 2,490 | 4,990 |
| AT609 | 1.500 | 3.125 | 1.062 | 1.630 | 2.900 | 0.220 | 1.88 | 3.000 | 0.031 | 1.4 | 18,730 | 52,140 | 2,390 | 4,780 |
| AT610 | 1.562 | 3.125 | 1.062 | 1.630 | 2.900 | 0.220 | 1.88 | 3.000 | 0.031 | 1.4 | 18,730 | 52,140 | 2,360 | 4,710 |
| AT611 | 1.625 | 3.375 | 1.312 | 1.750 | 3.150 | 0.250 | 2.00 | 3.000 | 0.031 | 2 | 25,620 | 67,380 | 2,210 | 4,410 |
| AT612 | 1.687 | 3.375 | 1.312 | 1.750 | 3.150 | 0.250 | 2.00 | 3.000 | 0.062 | 2 | 25,620 | 67,380 | 2,180 | 4,350 |
| AT613 | 1.750 | 3.500 | 1.312 | 1.880 | 3.300 | 0.250 | 2.06 | 3.250 | 0.062 | 2 | 27,670 | 74,120 | 2,100 | 4,200 |
| AT614 | 1.812 | 3.500 | 1.312 | 1.880 | 3.300 | 0.250 | 2.06 | 3.250 | 0.062 | 2 | 27,670 | 74,120 | 2,070 | 4,140 |
| AT615 | 1.875 | 3.625 | 1.312 | 2.000 | 3.410 | 0.250 | 2.25 | 3.250 | 0.062 | 2.2 | 27,760 | 74,120 | 2,000 | 4,000 |
| AT616 | 1.937 | 3.625 | 1.312 | 2.000 | 3.410 | 0.250 | 2.25 | 3.250 | 0.062 | 2.2 | 27,760 | 74,120 | 1,980 | 3,950 |
| AT617 | 2.000 | 3.750 | 1.312 | 2.060 | 3.520 | 0.250 | 2.48 | 3.250 | 0.062 | 2.3 | 27,870 | 74,120 | 1,910 | 3,820 |
| AT618 | 2.125 | 3.875 | 1.312 | 2.190 | 3.650 | 0.250 | 2.50 | 3.500 | 0.062 | 2.3 | 28,740 | 80,850 | 1,830 | 3,660 |
| AT619 | 2.250 | 4.000 | 1.312 | 2.310 | 3.750 | 0.250 | 2.69 | 3.500 | 0.062 | 2.5 | 32,030 | 87,590 | 1,760 | 3,510 |
| AT620 | 2.375 | 4.125 | 1.312 | 2.440 | 3.900 | 0.250 | 2.88 | 3.500 | 0.062 | 2.6 | 32,250 | 87,590 | 1,690 | 3,370 |
| AT621 | 2.500 | 4.250 | 1.312 | 2.560 | 4.000 | 0.250 | 2.88 | 4.000 | 0.062 | 2.7 | 34,180 | 94,330 | 1,620 | 3,250 |
| AT622 | 2.625 | 4.530 | 1.312 | 2.690 | 4.220 | 0.250 | 3.13 | 3.750 | 0.062 | 3 | 36,150 | 101,070 | 1,540 | 3,090 |
| AT623 | 2.750 | 4.655 | 1.312 | 2.810 | 4.340 | 0.250 | 3.31 | 4.250 | 0.062 | 3.2 | 38,350 | 107,800 | 1,490 | 2,980 |
| AT624 | 3.000 | 4.968 | 1.312 | 3.060 | 4.590 | 0.250 | 3.50 | 4.500 | 0.062 | 3.4 | 40,510 | 114,540 | 1,390 | 2,790 |
| AT625 | 3.250 | 5.218 | 1.312 | 3.340 | 4.840 | 0.250 | 3.81 | 4.750 | 0.062 | 3.6 | 40,770 | 114,540 | 1,310 | 2,620 |
| AT626 | 3.500 | 5.468 | 1.312 | 3.590 | 5.090 | 0.250 | 4.06 | 5.000 | 0.062 | 3.8 | 44,350 | 128,020 | 1,230 | 2,470 |

rollway, THRUST BEARINGS

## Cylindrical Roller Thrust 700 Series...

- Heavy Series Cylindrical Roller Thrust.
- Standard Inch Series.
- Machined Brass Retainers - Standard.
- Crowned Rollers with Sphered Ends.


| Basic Bearing Number | $\begin{gathered} \text { Bore } \\ \text { B } \end{gathered}$ | Outside Diameter D | Height H | Internal Dimensions |  |  | Housing \& Shaft Fillet R | Est. Weight | Capacity |  | Limiting Speed |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | b | d | f |  |  | $\begin{gathered} \text { dynamic } \\ \text { C } \\ \hline \end{gathered}$ | static Co | grease | oil |
|  | Inches |  |  | Inches |  |  |  |  | Pounds |  | RPM |  |
| T727 | 2.000 | 6.000 | 1.375 | 2.250 | 5.880 | 0.380 | 0.062 | 8.6 | 77,500 | 295,900 | 1,340 | 2,690 |
| T728 | 2.000 | 7.000 | 1.375 | 2.250 | 6.880 | 0.380 | 0.062 | 11.7 | 105,600 | 363,600 | 1,190 | 2,390 |
| T729 | 2.000 | 8.000 | 1.375 | 2.250 | 7.880 | 0.380 | 0.062 | 16 | 111,900 | 460,200 | 1,080 | 2,150 |
| T730 | 3.000 | 6.000 | 1.375 | 3.250 | 5.880 | 0.380 | 0.062 | 7.3 | 82,200 | 268,000 | 1,190 | 2,390 |
| T731 | 3.000 | 7.000 | 1.375 | 3.250 | 6.880 | 0.380 | 0.062 | 10.8 | 98,800 | 365,800 | 1,080 | 2,150 |
| T732 | 3.000 | 8.000 | 1.375 | 3.250 | 7.880 | 0.380 | 0.062 | 14.7 | 126,200 | 494,500 | 980 | 1,950 |
| T733 | 3.000 | 9.000 | 1.375 | 3.250 | 8.880 | 0.380 | 0.062 | 19.2 | 147,500 | 642,800 | 900 | 1,790 |
| T734 | 4.000 | 7.000 | 1.750 | 4.250 | 6.880 | 0.500 | 0.062 | 11.4 | 111,100 | 320,500 | 980 | 1,950 |
| T735 | 4.000 | 8.000 | 1.750 | 4.250 | 7.880 | 0.500 | 0.062 | 16.6 | 132,200 | 454,200 | 900 | 1,790 |
| T736 | 4.000 | 9.000 | 1.750 | 4.250 | 8.880 | 0.500 | 0.062 | 22.4 | 158,400 | 658,100 | 830 | 1,650 |
| T737 | 4.000 | 10.000 | 1.750 | 4.250 | 9.880 | 0.500 | 0.062 | 29 | 192,200 | 777,800 | 770 | 1,540 |
| T738 | 5.000 | 8.000 | 1.750 | 5.250 | 7.880 | 0.500 | 0.062 | 13.5 | 111,000 | 419,400 | 830 | 1,650 |
| T739 | 5.000 | 9.000 | 1.750 | 5.250 | 8.880 | 0.500 | 0.062 | 19.5 | 162,000 | 631,800 | 770 | 1,540 |
| T740 | 5.000 | 10.000 | 2.000 | 5.250 | 9.880 | 0.560 | 0.125 | 30 | 205,100 | 703,300 | 720 | 1,430 |
| T741 | 5.000 | 11.000 | 2.000 | 5.250 | 10.880 | 0.560 | 0.125 | 38 | 231,200 | 870,900 | 670 | 1,340 |
| T742 | 5.000 | 12.000 | 2.000 | 5.250 | 11.880 | 0.560 | 0.125 | 47 | 276,100 | 1,144,000 | 630 | 1,260 |
| T743 | 6.000 | 9.000 | 2.000 | 6.380 | 8.750 | 0.560 | 0.125 | 18 | 130,600 | 450,100 | 720 | 1,430 |
| T744 | 6.000 | 10.000 | 2.000 | 6.380 | 9.750 | 0.560 | 0.125 | 25 | 190,300 | 648,600 | 670 | 1,340 |
| T745 | 6.000 | 11.000 | 2.000 | 6.380 | 10.750 | 0.560 | 0.125 | 34 | 233,400 | 929,900 | 630 | 1,260 |
| T746 | 6.000 | 12.000 | 2.000 | 6.380 | 11.750 | 0.560 | 0.125 | 42 | 267,000 | 1,097,100 | 600 | 1,190 |
| T747 | 7.000 | 10.000 | 2.000 | 7.380 | 9.750 | 0.560 | 0.125 | 20 | 154,500 | 550,100 | 630 | 1,260 |
| T748 | 7.000 | 11.000 | 2.000 | 7.380 | 10.750 | 0.560 | 0.125 | 28 | 213,600 | 790,800 | 600 | 1,190 |
| T749 | 7.000 | 12.000 | 2.000 | 7.380 | 11.750 | 0.560 | 0.125 | 40 | 251,600 | 1,022,900 | 570 | 1,130 |
| T750 | 7.000 | 14.000 | 3.000 | 7.380 | 13.750 | 0.880 | 0.250 | 88 | 436,200 | 1,598,200 | 510 | 1,020 |
| T751 | 8.000 | 12.000 | 3.000 | 8.380 | 11.750 | 0.880 | 0.250 | 48 | 258,000 | 945,400 | 540 | 1,080 |
| T752 | 8.000 | 14.000 | 3.000 | 8.380 | 13.750 | 0.880 | 0.250 | 78 | 397,500 | 1,487,900 | 490 | 980 |
| T753 | 8.000 | 16.000 | 3.000 | 8.380 | 15.750 | 0.880 | 0.250 | 114 | 516,400 | 2,072,500 | 450 | 900 |
| T754 | 10.000 | 16.000 | 3.000 | 10.380 | 15.750 | 0.880 | 0.250 | 88 | 437,800 | 1,747,200 | 410 | 830 |
| T755 | 10.000 | 18.000 | 3.750 | 10.380 | 17.750 | 1.130 | 0.250 | 168 | 614,200 | 2,697,600 | 380 | 770 |
| T756 | 10.000 | 20.000 | 3.750 | 10.380 | 19.750 | 1.130 | 0.250 | 225 | 766,000 | 3,250,900 | 360 | 720 |
| T757 | 12.000 | 18.000 | 3.750 | 12.500 | 17.750 | 1.130 | 0.250 | 134 | 469,200 | 2,031,900 | 360 | 720 |
| T758 | 12.000 | 20.000 | 4.500 | 12.500 | 19.750 | 1.380 | 0.250 | 222 | 724,600 | 2,937,800 | 340 | 670 |
| T759 | 12.000 | 24.000 | 4.500 | 12.500 | 23.750 | 1.380 | 0.250 | 372 | 1,045,900 | 4,688,000 | 300 | 600 |
| T760 | 14.000 | 20.000 | 3.750 | 14.500 | 19.750 | 1.130 | 0.250 | 152 | 540,000 | 2,385,200 | 320 | 630 |
| T761 | 14.000 | 22.000 | 3.750 | 14.500 | 21.750 | 1.130 | 0.250 | 215 | 732,000 | 3,339,900 | 300 | 600 |
| T762 | 14.000 | 24.000 | 3.750 | 14.500 | 23.750 | 1.130 | 0.250 | 285 | 858,100 | 4,280,300 | 280 | 570 |
| T763 | 16.000 | 22.000 | 4.500 | 16.500 | 21.500 | 1.380 | 0.250 | 205 | 609,800 | 2,362,800 | 280 | 570 |
| T764 | 16.000 | 24.000 | 4.500 | 16.500 | 23.500 | 1.380 | 0.250 | 290 | 878,700 | 3,819,100 | 270 | 540 |
| T765 | 16.000 | 26.000 | 4.500 | 16.500 | 25.500 | 1.380 | 0.250 | 380 | 1,041,500 | 4,916,300 | 260 | 510 |
| T766 | 18.000 | 26.000 | 5.000 | 18.750 | 25.500 | 1.500 | 0.250 | 350 | 945,500 | 3,937,500 | 240 | 490 |
| T767 | 18.000 | 28.000 | 5.000 | 18.750 | 27.500 | 1.500 | 0.250 | 460 | 1,185,800 | 5,393,500 | 230 | 470 |
| T768 | 18.000 | 30.000 | 5.500 | 18.750 | 29.500 | 1.500 | 0.250 | 630 | 1,571,600 | 6,753,800 | 220 | 450 |
| T769 | 20.000 | 28.000 | 5.500 | 21.250 | 27.500 | 1.500 | 0.250 | 420 | 1,091,700 | 4,407,200 | 220 | 450 |
| T770 | 20.000 | 30.000 | 5.500 | 21.250 | 29.500 | 1.500 | 0.250 | 550 | 1,544,800 | 6,885,500 | 220 | 430 |
| T771 | 20.000 | 32.000 | 6.000 | 21.250 | 31.500 | 1.750 | 0.250 | 750 | \#N/A | 7,850,000 | 210 | 410 |
| T772 | 22.000 | 30.000 | 5.500 | 23.250 | 29.500 | 1.500 | 0.250 | 450 | 1,161,900 | 4,774,500 | 210 | 410 |
| T773 | 22.000 | 32.000 | 5.500 | 23.250 | 31.500 | 1.500 | 0.250 | 590 | \#N/A | 6,153,200 | 200 | 400 |
| T774 | 22.000 | 34.000 | 6.000 | 23.250 | 33.500 | 1.750 | 0.250 | 800 | 1,742,200 | 7,981,700 | 190 | 380 |

ROLLWAS. THRUST BEARINGS

## Cylindrical Roller Thrust 700 Series With Aligning Plates...

- Medium Series Cylindrical Roller Thrust.
- Standard Inch Series.
- Allows for $3^{\circ}$ Initial Static Misalignment.
- Machined Brass Retainers - Standard.
- Crowned Rollers with Sphered Ends.


| Basic <br> Bearing <br> Number | Bore B | Outside Diameter D | Height H | Internal Dimensions |  |  |  |  | Housing \& Shaft Fillet R | Est. Weight | Capacity |  | Limiting Speed |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | b | d | f | m | f |  |  | $\begin{gathered} \text { dynamic } \\ C \end{gathered}$ | static Co | grease | oil |
|  | Inches |  |  | Inches |  |  |  |  |  |  | Pounds |  | RPM |  |
| AT727 | 2.000 | 6.312 | 1.812 | 2.060 | 5.880 | 0.380 | 3.38 | 7.500 | 0.062 | 11.5 | 78,190 | 294,150 | 1,340 | 2,690 |
| AT728 | 2.000 | 7.312 | 1.812 | 2.060 | 6.880 | 0.380 | 4.25 | 9.500 | 0.062 | 15.8 | 102,870 | 360,770 | 1,190 | 2,390 |
| AT729 | 2.000 | 8.312 | 1.812 | 2.060 | 7.880 | 0.380 | 5.00 | 12.000 | 0.062 | 21.5 | 114,430 | 481,330 | 1,080 | 2,150 |
| AT730 | 3.000 | 6.312 | 1.812 | 3.060 | 5.880 | 0.380 | 4.00 | 6.000 | 0.062 | 9.6 | 80,300 | 80,300 | 1,190 | 2,390 |
| AT731 | 3.000 | 7.312 | 1.812 | 3.060 | 6.880 | 0.380 | 4.38 | 9.500 | 0.062 | 14.3 | 98,800 | 96,890 | 1.080 | 2,150 |
| AT732 | 3.000 | 8.312 | 1.812 | 3.060 | 7.880 | 0.380 | 5.25 | 12.000 | 0.062 | 20 | 123,740 | 123,740 | 980 | 1,950 |
| AT733 | 3.000 | 9.312 | 1.812 | 3.060 | 8.880 | 0.380 | 6.25 | 14.000 | 0.062 | 26 | 97,630 | 97,630 | 900 | 1,790 |
| AT734 | 4.000 | 7.375 | 2.312 | 4.090 | 6.880 | 0.500 | 5.00 | 6.375 | 0.062 | 15 | 159,510 | 159,510 | 980 | 1,950 |
| AT735 | 4.000 | 8.375 | 2.312 | 4.090 | 7.880 | 0.500 | 5.25 | 8.500 | 0.062 | 22 | 136,440 | 136,440 | 900 | 1,790 |
| AT736 | 4.000 | 9.375 | 2.312 | 4.090 | 8.880 | 0.500 | 5.88 | 10.000 | 0.062 | 30 | 156,000 | 156,000 | 830 | 1,650 |
| AT737 | 4.000 | 10.500 | 2.312 | 4.090 | 9.880 | 0.500 | 6.50 | 14.000 | 0.062 | 39 | 196,470 | 196,470 | 770 | 1,540 |
| AT738 | 5.000 | 8.500 | 2.312 | 5.130 | 7.880 | 0.500 | 6.00 | 7.375 | 0.062 | 18 | 109,390 | 109,390 | 830 | 1,650 |
| AT739 | 5.000 | 9.500 | 2.312 | 5.130 | 8.880 | 0.500 | 6.13 | 10.500 | 0.062 | 26 | 159,120 | 159,120 | 770 | 1,540 |
| AT740 | 5.000 | 10.500 | 2.625 | 5.130 | 9.880 | 0.560 | 6.25 | 12.750 | 0.125 | 39 | 200,280 | 200,280 | 720 | 1,430 |
| AT741 | 5.000 | 11.500 | 2.625 | 5.130 | 10.880 | 0.560 | 7.00 | 16.000 | 0.125 | 50 | 236,280 | 236,280 | 670 | 1,340 |
| AT742 | 5.000 | 12.500 | 2.625 | 5.130 | 11.880 | 0.560 | 7.25 | 19.750 | 0.125 | 63 | 335,330 | 1,144,000 | 630 | 1,260 |
| AT743 | 6.000 | 9.500 | 2.625 | 6.130 | 8.750 | 0.560 | 7.25 | 6.750 | 0.125 | 23 | 127,970 | 450,100 | 720 | 1,430 |
| AT744 | 6.000 | 10.500 | 2.625 | 6.130 | 9.750 | 0.560 | 7.38 | 9.500 | 0.125 | 33 | 190,300 | 641,840 | 670 | 1,340 |
| AT745 | 6.000 | 11.500 | 2.625 | 6.130 | 10.750 | 0.560 | 7.38 | 13.500 | 0.125 | 44 | 228,860 | 923,160 | 630 | 1,260 |
| AT746 | 6.000 | 12.500 | 2.625 | 6.130 | 11.750 | 0.560 | 7.50 | 17.000 | 0.125 | 57 | 262,360 | 1,088,020 | 600 | 1,190 |
| AT747 | 7.000 | 10.500 | 2.625 | 7.130 | 9.750 | 0.560 | 8.13 | 8.125 | 0.125 | 26 | 151,500 | 546,420 | 630 | 1,260 |
| AT748 | 7.000 | 11.500 | 2.625 | 7.130 | 10.750 | 0.560 | 8.25 | 11.500 | 0.125 | 37 | 209,390 | 783,390 | 600 | 1,190 |
| AT749 | 7.000 | 12.500 | 2.625 | 7.130 | 11.750 | 0.560 | 8.25 | 15.375 | 0.125 | 50 | 247,920 | 1,015,470 | 570 | 1,130 |
| AT750 | 7.000 | 14.750 | 4.000 | 7.190 | 13.750 | 0.880 | 9.00 | 15.375 | 0.250 | 118 | 428,070 | 1,583,420 | 510 | 1,020 |
| AT751 | 8.000 | 12.750 | 4.000 | 8.190 | 11.750 | 0.880 | 9.38 | 8.500 | 0.250 | 63 | 254,160 | 939,870 | 540 | 1,080 |
| AT752 | 8.000 | 14.750 | 4.000 | 8.190 | 13.750 | 0.880 | 10.38 | 12.000 | 0.250 | 106 | 390,790 | 1,476,330 | 490 | 980 |
| AT753 | 8.000 | 16.875 | 4.000 | 8.250 | 15.750 | 0.880 | 10.50 | 19.500 | 0.250 | 154 | 507,980 | 2,056,050 | 450 | 900 |
| AT754 | 10.000 | 16.875 | 4.000 | 10.250 | 15.750 | 0.880 | 11.50 | 16.750 | 0.250 | 120 | 431,150 | 1,734,480 | 410 | 830 |
| AT755 | 10.000 | 18.875 | 5.000 | 10.250 | 17.750 | 1.130 | 12.00 | 20.000 | 0.250 | 225 | 603,350 | 2,680,890 | 380 | 770 |
| AT756 | 10.000 | 20.875 | 5.000 | 10.250 | 19.750 | 1.130 | 13.25 | 24.000 | 0.250 | 300 | 757,260 | 3,227,020 | 360 | 720 |
| AT757 | 12.000 | 18.875 | 5.000 | 12.250 | 17.750 | 1.130 | 13.63 | 15.375 | 0.250 | 180 | 463,250 | 2,022,690 | 360 | 720 |
| AT758 | 12.000 | 20.875 | 6.000 | 12.250 | 19.750 | 1.380 | 13.88 | 20.000 | 0.250 | 300 | 714,040 | 2,937,800 | 340 | 670 |
| AT759 | 12.000 | 24.875 | 6.000 | 12.250 | 23.750 | 1.380 | 16.00 | 28.500 | 0.250 | 510 | 1,029,760 | 4,652,910 | 300 | 600 |
| AT760 | 14.000 | 20.875 | 4.875 | 14.250 | 19.750 | 1.130 | 15.50 | 19.500 | 0.250 | 200 | 532,480 | 2,374,460 | 320 | 630 |
| AT761 | 14.000 | 22.875 | 4.875 | 14.250 | 21.750 | 1.130 | 15.50 | 28.500 | 0.250 | 280 | 722,020 | 3,319,190 | 300 | 600 |
| AT762 | 14.000 | 24.875 | 4.875 | 14.250 | 23.750 | 1.130 | 16.38 | 36.125 | 0.250 | 370 | 848,180 | 4,280,300 | 280 | 570 |
| AT763 | 16.000 | 22.875 | 6.000 | 16.250 | 21.500 | 1.380 | 17.50 | 17.500 | 0.250 | 270 | 601,150 | 2,346,990 | 280 | 570 |
| AT764 | 16.000 | 25.000 | 6.000 | 16.250 | 23.500 | 1.380 | 18.00 | 23.500 | 0.250 | 385 | 878,700 | 3,788,720 | 270 | 540 |
| AT765 | 16.000 | 27.000 | 6.000 | 16.250 | 25.500 | 1.380 | 18.50 | 29.625 | 0.250 | 510 | 1,027,320 | 4,885,840 | 260 | 510 |
| AT766 | 18.000 | 27.000 | 6.750 | 18.380 | 25.500 | 1.500 | 19.50 | 23.500 | 0.250 | 470 | 939,680 | 3,905,990 | 240 | 490 |
| AT767 | 18.000 | 29.000 | 6.750 | 18.380 | 27.500 | 1.500 | 20.00 | 29.625 | 0.250 | 620 | 1,190,250 | 5,363,260 | 230 | 470 |
| AT768 | 18.000 | 31.000 | 7.250 | 18.380 | 29.500 | 1.500 | 20.63 | 36.125 | 0.250 | 840 | 1,554,140 | 6,720,410 | 220 | 450 |

$R_{\text {ROLLWAL }}$ THRUST BEARINGS

## Cylindrical Roller Thrust Crane Hook Series <br> With and Without Grease Fitting....

- Special Design for Crane Hook Applications.
- Designed to Fit Standard Hook Shanks.
- Steel "Weathershed" to Keep Out Contaminants.
- Available With or Without Grease Fittings.
- Bearing Capacity is the Static Load Rating Based on a Permanent Deformation of . 0002 inch per inch of Roller Diameter.


CT Type


WCT Type

| Basic Bearing Number |  | Designed Hook Shank | $\begin{gathered} \text { Bore } \\ \hline \text { B } \\ \hline \end{gathered}$ | Outside Diameter D |  | Height H | Internal Dimensions |  | Bearing Capacity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grease Fitting |  |  |  |  |  |  |  |  |  |
| None | Installed |  |  | CT | WCT * |  | d | h |  |
| CT-11 | WCT-11 | $15 / 8$ | 1.640 | 3.093 | 3.343 | 0.812 | 2.95 | 0.69 | 36,890 |
| CT-16 | WCT-16 | $115 / 16$ | 1.952 | 3.468 | 3.593 | 0.812 | 3.22 | 0.69 | 65,310 |
| CT-17 | WCT-17 | 2 | 2.015 | 3.937 | 4.000 | 1.000 | 3.60 | 0.88 | 73,210 |
| CT-19 | WCT-19 | $21 / 4$ | 2.265 | 4.000 | 4.250 | 1.000 | 3.86 | 0.88 | 72,970 |
| CT-20-C | WCT-20-C | $21 / 4$ | 2.265 | 4.250 | 4.375 | 1.000 | 3.98 | 0.88 | 88,600 |
| CT-23 | WCT-23 | $23 / 4$ | 2.765 | 4.750 | 4.843 | 1.000 | 4.45 | 0.88 | 93,820 |
| CT-24-A | WCT-24-A | $23 / 4$ | 2.765 | 4.875 | 5.156 | 1.250 | 4.76 | 1.13 | 121,300 |
| CT-27-A | WCT-27-A | $31 / 4$ | 3.265 | 6.125 | 6.250 | 1.500 | 5.85 | 1.38 | 180,810 |
| CT-27-C | WCT-27-C | $31 / 4$ | 3.265 | 6.187 | 6.375 | 1.750 | 5.97 | 1.63 | 212,960 |
| CT-27-B | WCT-27-B | $31 / 2$ | 3.515 | 6.156 | 6.375 | 1.625 | 5.97 | 1.50 | 203,410 |
| CT-28-A | WCT-28-A | $31 / 2$ | 3.515 | 6.750 | 6.937 | 1.625 | 6.54 | 1.50 | 245,110 |
| CT-34-A | WCT-34-A | $33 / 4$ | 3.765 | 7.125 | 7.250 | 1.875 | 6.86 | 1.75 | 288,080 |
| CT-35-A | WCT-35-A | $41 / 4$ | 4.265 | 8.171 | 8.375 | 2.000 | 7.97 | 1.88 | 369,200 |
| CT-38-A | WCT-38-A | $41 / 2$ | 4.515 | 8.125 | 8.312 | 2.000 | 7.91 | 1.88 | 390,910 |
| CT-39-A | WCT-39-A | 5 | 5.015 | 9.156 | 9.375 | 2.250 | 8.97 | 2.13 | 628,470 |
| CT-44-A | WCT-44-A | $51 / 2$ | 5.515 | 10.500 | 10.500 | 2.500 | 10.10 | 2.38 | 628,470 |
| CT-45-A | WCT-45-A | 6 | 6.015 | 11.156 | 11.375 | 3.000 | 10.97 | 2.75 | 923,160 |
| CT-49-A | WCT-49-A | 6 13/16 | 6.827 | 12.750 | 12.750 | 2.500 | 12.34 | 2.38 | 1,004,880 |

[^1]
## Tapered Thrust Bearings...

## TTHD Style

ROLLWAY ${ }^{\circledR}$ Tapered Thrust Bearings (TTHD Style) are engineered for efficiency under the harshest industrial conditions. These bearings feature tapered rollers positioned between two plates with tapered raceways. The tapered thrust differs significantly from the cylindrical roller thrust as there is true rolling motion with the vertex
 of the conical sections intersecting the bearing axis. When the bearing is loaded, the rollers exhibit an outward force that is countered by the plate's outer guide rib. The large end of the roller and the guide rib are spherically ground and matched to minimize loading and friction between the two components. The large spherical end of the roller is counterbored to improve lubrication between the roller and guide rib. By virtue of the additional contact surface these bearings will have a higher dynamic capacity than a similar sized cylindrical roller thrust bearing.

## T-FLAT (TTVF) Style

The T-Flat is similar to the TTHD style except one plate is flat. The guide rib on the one tapered raceway resists the induced radial force component caused by the inclined plane while the flat plate allows radial displacement without adversely affecting bearing operation. Maximum
 capacity is achieved through close spacing of rollers through the use of a steel, pin type retainer.

## Basic Bearing Design... Tapered Thrust Bearing Components

## Plates and Rolling Elements...

The plates and rollers are made from carburizing grade steel hardened to Rc 58 min., with the core hardness maintained at Rc 30 min . Upon request we can manufacture the components from CEVM or VIMVAR grades of material.

All thrust plates are accurately ground for flatness and parallelism of roller riding and backing surfaces. Locating diameters are ground to obtain an accurate fit on the shaft or in the housing. The surfaces of the plates are ground to provide a long operating life. The guide rib on the tapered plates is spherically ground to match the roller and reduce friction. All tapered thrust plates are designed to be used with a full complement of rollers which makes it possible to supply this version for any size.

All rolling elements are precision ground and graded to provide an even distribution of load over the contact surfaces. Rollers are crowned for optimum contact stress patterns by reducing the end stress between the roller and the thrust plates. The large ends of the rollers are spherically ground. This provides controlled contact between the rollers and the guide rib, thus enhancing the flow of lubricant.

## Basic Bearing Design... Tapered Thrust Bearing Components

## Retainers...

The TTHD taper thrust bearing retainers are machined from a single piece of centrifugally cast brass. The retainer is designed to pilot on the thrust plates' flanges. The roller pockets are accurately machined at right angles to the thrust force which will be applied to the bearing.

The T-Flat retainers are "pin through" style (pins extend through the center of the roller). The retainer consists of two steel rings through which the hardened steel pins are secured. An alternate design is a retainer machined from a single piece of centrifugally cast brass with the rollers retained by two pins.

## Superior Performance In Horizontal Shaft Applications...

Tapered thrust bearings have been found to have superior performance in horizontal shaft applications. The self centering action of the rollers counteract the gravitational effect of the roller assembly, thus reducing the possibility of a bearing failure resulting from the roller assembly contacting the shaft.

## True Rolling Motion...

By virtue of their design, tapered thrust bearings provide true rolling motion when compared to cylindrical thrust bearings whose rollers tend to have a minimal amount of slippage due to the fundamental design.

## Tapered Thrust Bearings <br> Maximizing Load For A Given Envelope...

For a given shaft size and approximate envelope, the Tapered Thrust bearing's dynamic capacity is considerably greater than a Cylindrical Roller Bearing.
See the example shown below.

## Cylindrical Thrust

 T7538" $\times 16$ " $\times 3$ "
Dyn. Cap. $=516,400 \mathrm{lbs}$.


Tapered Thrust T-811
8" x 16.5" x 3.625"
Dyn. Cap. $=752,120$ lbs.

## Nomenclature... Tapered Thrust

TTHD Nomenclature
Example:
T-911A


TYPE DESIGNATOR
T. $\qquad$
SIZE DESIGNATOR
Reference catalog for sizes.

## VARIATION CODES

- A - Variation from standard - consult catalog or engineering.
- F - Full complement of rollers.
- V - Bearing plates and rollers made from VIMVAR or CEVM steel.

T-Flat (TTVF) Nomenclature
Example:

T-050105-F-201


TYPE DESIGNATOR
T---F -TTVF Style
T---FS -TTVF Style with 2 piece aligning plate.

## SIZE DESIGNATOR

Bearing Bore and Outside Diameter size. The first three digits are the bore size and the second three digits are the O.D size. Example: 050105 refers to a 5 inch bore and 10.5 inch O.D.

## VARIATION CODES

201 to 215 are numerically assigned codes that designate the variation from standard (example $201=1$ st variation, $202=2 n d$ variation, etc.). These bearing code numbers do not reference the modification from standard. Engineering must be contacted for information concerning a particular modification.

## Tapered Thrust Bearings...

- TTHD Style Tapered Roller Thrust Bearings.
- Standard Inch Series.
- Machined Centrifugally Cast Brass Retainers.
- Crowned Rollers.
- Plates and Rollers of Carburized Steel.


## Typical Applications:

Extruders, Pulverizers, Pumps, Swivels and Industrial \& Marine Gear Boxes.


| BASIC BEARING NUMBER | $\begin{gathered} \text { BORE } \\ \text { B } \end{gathered}$ | OUTSIDE DIAMETER D | $\begin{aligned} & \text { HEIGHT } \\ & \text { W } \end{aligned}$ | HOUSING \& | EST. WEIGHT | CAPACITY |  | LIMITING SPEED OIL BATH |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | SHAFT FILLET $\mathbf{R}$ |  | $\begin{gathered} \hline \text { DYNAMIC } \\ \text { C } \\ \hline \end{gathered}$ | $\begin{gathered} \text { STATIC } \\ \mathrm{C}_{0} \\ \hline \end{gathered}$ |  |
|  | INCHES |  |  | INCHES | POUNDS | POUNDS |  | RPM |
| T-411 | 4.000 | 8.500 | 1.813 | 0.13 | 20 | 219,100 | 762,700 | 1070 |
| T-511 | 5.000 | 10.500 | 2.313 | 0.19 | 37 | 322,500 | 1,232,570 | 860 |
| T-511A | 5.063 | 10.500 | 2.313 | 0.19 | 37 | 322,500 | 1,232,570 | 860 |
| T-611 | 6.000 | 12.500 | 2.750 | 0.25 | 66 | 455,125 | 1,672,410 | 725 |
| T-661 | 6.625 | 12.000 | 2.750 | 0.25 | 56 | 382,620 | 1,323,000 | 720 |
| T-691 | 6.875 | 14.125 | 3.250 | 0.25 | 93 | 539,980 | 2,023,000 | 640 |
| T-711 | 7.000 | 14.500 | 3.250 | 0.31 | 109 | 601,700 | 2,101,000 | 625 |
| T-811 | 8.000 | 16.500 | 3.625 | 0.38 | 132 | 752,120 | 2,879,160 | 550 |
| T-9020 | 9.000 | 17.000 | 3.495 | 0.38 | 136 | 744,400 | 2,883,000 | 510 |
| T-911 | 9.000 | 19.000 | 4.125 | 0.44 | 237 | 991,250 | 3,796,762 | 475 |
| T-911A | 9.250 | 19.000 | 4.125 | 0.44 | 232 | 991,250 | 3,796,762 | 475 |
| T-921 | 9.250 | 21.500 | 5.000 | 0.63 | 351 | 1,361,600 | 5,346,100 | 435 |
| T-1011 | 10.000 | 21.250 | 4.625 | 0.44 | 320 | 1,230,400 | 4,874,000 | 425 |
| T-1120 | 11.000 | 23.750 | 5.375 | 0.44 | 490 | 1,573,660 | 6,286,210 | 385 |
| T-16050 | 16.000 | 33.000 | 7.000 | 0.50 | 1165 | 2,877,500 | 11,295,180 | 275 |

TAPERED THRUST BEARINGS

## T-Flat Thrust Bearings...

- TTVF Style Tapered Roller Thrust Bearings.
- Standard Inch Series.
- Aligning Style Available - Allows for $3^{\circ}$ Initial Static Misalignment.
- Machined Brass or Pin Type Retainers.
- Crowned Rollers.
- Plates and Rollers of Carburized Steel.


## Typical Applications:

Extruders, Pulverizers, Pumps and Swivels.


Standard T-Flat Thrust Bearing

| BASIC BEARING NUMBER | BORE <br> B | OUTSIDE DIAMETER D | $\begin{aligned} & \text { HEIGHT } \\ & \mathbf{W} \end{aligned}$ | HOUSING \& SHAFT FILLET R | CAPACITY |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{gathered} \text { DYNAMIC } \\ \text { C } \\ \hline \end{gathered}$ | STATIC C |
|  | INCHES |  |  | INCHES | POUNDS |  |
| T-050105-F | 5.0000 | 10.5000 | 2.3125 | 0.14 | 292,000 | 594,000 |
| T-070140-F | 7.0000 | 14.0000 | 4.5000 | 0.19 | 523,000 | 1,243,000 |
| T-072160-F | 7.2500 | 16.0000 | 8.0000 | 0.19 | 979,000 | 1,851,000 |
| T-090190-F | 9.0000 | 19.0000 | 5.7500 | 0.25 | 1,326,800 | 2,473,000 |
| T-101215-F | 10.1000 | 21.5000 | 6.5000 | 0.25 | 1,777,000 | 3,352,000 |
| T-120240-F | 12.0000 | 24.0000 | 4.5000 | 0.25 | 1,660,000 | 3,994,000 |
| T-140260-F | 14.0000 | 26.0000 | 9.1250 | 0.31 | 2,219,000 | 4,467,000 |
| T-170340-F | 17.0000 | 34.0000 | 9.0000 | 0.38 | 4,010,000 | 8,500,000 |



Self Aligning T-Flat Thrust Bearing

| BASIC <br> BEARING <br> NUMBER | BORE <br> B | OUTSIDE <br> DIAMETER <br> $\mathbf{D}$ | HEIGHT <br> $\mathbf{W}$ |  <br> SHAFT FILLET <br> $\mathbf{R}$ | STATIC <br> C | DYNAMIC <br> $\mathbf{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## Tandem Thrust Bearings...

ROLLWAY ${ }^{\circledR}$ Tandem Thrust Bearings, also referred to as "Multi-Stage Thrust" bearings, were originally designed and patented by ROLLWAY Bearing Corp. in 1945, Patent \#2374820.

The bearing consists of a series of thrust plates and roller assemblies with compression sleeves separating the stages. The component design and overall match grinding make this bearing unique. The design of the sleeves along with the precision match grinding of the components allows the load to be equally applied through the stages of the bearing.

Tandem thrust bearings are designed to be used in horizontal shaft applications (extruder gear drives) and it is essential that a sufficient thrust load be applied to prevent roller slip. Typically, the minimum load required is expressed as a ratio of the bearing's dynamic load rating (C) to the applied load ( P ). Loads representing $\mathrm{C} / \mathrm{P}>12$ must be avoided and loads where $\mathrm{C} / \mathrm{P}$ falls between 8 and 12 should be avoided.

The Tandem design allows the use of a high thrust capacity bearing in a small area. It was originally designed for a rotary swivel used on an oil drilling rig. Later these bearings were adopted by plastics and rubber manufacturers for use in single screw extruders utilizing 2 and 3 stage bearings. The tandem design enabled the extruder manufacturers to increase the output of the machines without increasing the size of the gear boxes. This allowed their customers to have a higher output machine without taking up more floor space. These bearings are used in twin screw
 extruders as well. Twin screw extruders have two parallel shafts very close to each other, making the use of the tandem thrust bearing essential. Some twin screw extruder designs use eight stage tandem thrust bearings. We manufacture two, three, four, six and eight stage bearings in both inch and metric series. Bore sizes range from about 1 to 22 inches with corresponding outside diameters ranging from 3.5 to 42 inches. ROLLWAY ${ }^{\circledR}$ tandem thrust bearings are supplied to original equipment manufacturers and the aftermarket.

## Minimal Backing Support

Requirements...
The tandem thrust design permits the use of minimal shaft and housing shoulders required by some applications. The cantilevering action of the thrust plates and use of compression sleeves enable these bearings to be used effectively where only minimal shaft and housing shoulder exist.

## Maximizing Footprint...

The use of a tandem thrust bearing enables the designer to create a gearbox with high thrust capacity within a small space. The end result is a gearbox with a smaller footprint. The drawing to the right is a comparison of three different thrust bearings of equivalent dynamic capacity. This illustrates the dramatic reduction in outside diameter associated with the tandem thrust bearings.


## ROLLWAU. THRUST BEARINGS

## TANDEM THRUST BEARINGS

## Tandem Thrust Bearings Designs...

## Availability...

ROLLWAY ${ }^{\circledR}$ Tandem Thrust Bearings are essentially designed to order, however, many sizes have become standard production items. ROLLWAY ${ }^{\circledR}$ Tandem Thrust Bearings can be designed in either inch or metric sizes, 2 to 8 stages with sizes ranging from inside diameters about 1 inch to outside diameters of 42 inches. We support existing tandem designs by providing replacement bearings and bearing reconditioning as required. Some of the more popular sizes are maintained in inventory. The tables on the following pages identify some of the popular ROLLWAY sizes available, with the basic sizes provided for reference only. For more detailed information on a particular size contact ROLLWAY customer service or engineering department.

## New Designs...

New designs can be engineered and produced in small volume. Contact engineering for assistance in developing a tandem bearing design that will satisfy your application requirements. Based on your design envelope, loads, speeds and desired life, our engineers will design a tandem thrust bearing for your application.

## Data Provided From ROLLWAY...

Detailed drawings are available on the listed Tandem Thrust Bearing designs. Upon request for a specific part number a drawing will be sent containing the information in the following drawing along with the rated dynamic capacity. Shaft and housing fits are also available upon request.


ROLLWAL
TANDEM THRUST BEARINGS
Tandem Thrust 2 Stage...


| PART NUMBER | B | D | H | DYN CAP LBS |
| :---: | :---: | :---: | :---: | :---: |
|  | INCH | INCH | INCH |  |
| TAB-017043-201 | 1.7500 | 4.3765 | 3.8750 | 79,000 |
| TAB-027047-203 | 2.7570 | 4.7035 | 2.6250 | 75,100 |
| TAB-030066-201 | 3.0000 | 6.6265 | 3.6250 | 141,000 |
| TAB-040082-201 | 4.0000 | 8.2515 | 7.0620 | 236,000 |
| TAB-040100 | 4.0000 | 10.0000 | 5.5620 | 376,000 |
| TAB-050090-202 | 5.0000 | 9.0000 | 5.3120 | 272,000 |
| TAB-060110-280 | 6.0000 | 11.0000 | 7.2500 | 427,000 |
| TAB-060120-201 | 6.0000 | 12.0000 | 6.2500 | 454,700 |
| TAB-060140-201 | 6.0000 | 14.0000 | 6.8120 | 619,000 |
| TAB-062120-201 | 6.2500 | 12.0000 | 5.0000 | 440,000 |
| TAB-070140-204 | 7.0000 | 14.0000 | 7.1250 | 605,000 |
| TAB-070140-205 | 7.0000 | 14.0000 | 7.7500 | 713,000 |
| TAB-070160-201 | 7.0000 | 16.0000 | 9.0000 | 925,000 |
| TAB-072160-202 | 7.2500 | 16.0000 | 9.0000 | 897,500 |
| TAB-080160-201 | 8.0000 | 16.0000 | 7.5000 | 775,000 |
| TAB-080172-201 | 8.0000 | 17.2460 | 9.7500 | 1,009,000 |
| TAB-090190-202 | 9.0000 | 19.0000 | 9.5000 | 1,240,000 |
| TAB-092169-203 | 9.2500 | 16.9390 | 7.7500 | 970,000 |
| TAB-100180 | 10.0000 | 18.0000 | 10.5000 | 1,078,000 |
| TAB-100200-202 | 10.0000 | 20.0000 | 8.5000 | 1,120,000 |
| TAB-100200-204 | 10.0000 | 20.0000 | 11.7500 | 1,458,000 |
| TAB-101215-204 | 10.1000 | 21.5025 | 12.8750 | 1,987,000 |
| TAB-120240-209 | 12.0000 | 24.0000 | 12.5000 | 2,320,000 |
| TAB-140260-201 | 14.0000 | 26.0000 | 13.6870 | 2,565,000 |
| TAB-140280-201 | 14.0000 | 28.0000 | 13.2500 | 2,469,000 |
| TAB-170340-201 | 17.0000 | 34.0000 | 17.6880 | 3,800,000 |
| TAB-220420-201 | 22.0000 | 42.0000 | 18.8750 | 4,810,000 |

TANDEM THRUST BEARINGS
Tandem Thrust 3 Stage...


| PART NUMBER | $\mathbf{B}$ | $\mathbf{D}$ | H | D |
| :--- | :---: | :---: | :---: | :---: |
|  | INCH | INCH | INCH |  |
| TAC-014035-202 | 1.3775 | 3.5433 | 4.3750 |  |
| TAC-022094-201 | 2.1654 | 9.4488 | 9.4488 | 93,600 |
| TAC-030053-210 | 3.0000 | 5.3880 | 4.2500 | 66,700 |
| TAC-030066-204 | 3.0000 | 6.6265 | 5.6000 | 155,000 |
| TAC-040100-202 | 4.0000 | 10.0000 | 8.1250 | 160,800 |
| TAC-101215-203 | 10.1000 | 21.5025 | 19.2500 | 458,000 |
| TAC-120240-207 | 12.0000 | 24.0000 | 21.2500 | $2,572,000$ |
| TAC-170340-204 | 17.0000 | 34.0000 | 25.5200 |  |

## Tandem Thrust 4 Stage...



| PART NUMBER | $\mathbf{B}$ | $\mathbf{D}$ | H | DYN CAP LBS |
| :--- | :---: | :---: | :---: | :---: |
|  | INCH | INCH | INCH |  |
| TMD-025100 | 0.9843 | 3.9370 | 5.8661 | 150,000 |
| TAD-012033-204 | 1.1830 | 3.3465 | 4.7750 | 69,400 |
| TMD-040127 | 1.5748 | 5.0000 | 6.9685 | 201,500 |
| TAD-017047-202 | 1.7712 | 4.7235 | 5.9060 | 191,000 |
| TAD-030082 | 3.0000 | 8.2500 | 10.0000 | 496,000 |
| TAD-059120-201 | 5.9055 | 12.0079 | 12.2047 |  |

TANDEM THRUST BEARINGS

## Tandem Thrust 6 Stage...



| PART NUMBER | B | D | H | DYN CAP LBS |
| :---: | :---: | :---: | :---: | :---: |
|  | INCH | INCH | INCH |  |
| TMF-023090-201 | 0.9051 | 3.5433 | 8.2500 | 160,650 |
| TMF-023090 | 0.9055 | 3.5433 | 8.2677 | 160,650 |
| TMF-025105 | 0.9843 | 4.1339 | 9.7244 | 211,300 |
| TAF-011028 | 1.1024 | 2.7559 | 5.5118 | 89,700 |
| TMF-030127-201 | 1.1811 | 5.0000 | 11.1024 | 329,900 |
| TMF-038150 | 1.4961 | 5.9055 | 14.1732 | 440,200 |
| TAF-017063 | 1.7000 | 6.2500 | 10.9750 | 413,200 |
| TAF-019060-201 | 1.8928 | 6.0455 | 9.2500 | 366,000 |
| TAF-019060 | 1.8940 | 6.0480 | 9.2500 | 366,000 |

Tandem Thrust 8 Stage...


| PART NUMBER | $\mathbf{B}$ | $\mathbf{D}$ | H | D |
| :--- | :---: | :---: | :---: | :---: |
|  | INCH | INCH | INCH |  |
| TMH-023090-201 | 0.9055 | 3.5433 | 10.6772 |  |
| TMH-023092 | 0.9055 | 3.6220 | 12.0079 | 214,200 |
| TMH-025105 | 0.9843 | 4.1339 | 12.5984 | 246,000 |
| TMH-030127 | 1.1811 | 5.0000 | 14.6575 | 285,750 |
| TMH-038160 | 1.4961 | 5.9055 | 18.2874 | 434,100 |
| TMH-040170 | 1.5748 | 6.6929 | 19.2910 | 589,530 |
| TMH-120360-201 | 4.7244 | 14.1732 | 35.4528 | 661,800 |

## ROLLWAL THRUST BEARINGS

## Specials...

ROLLWAY has a rich history of providing the engineered solution to tough thrust bearing problems. Our engineering staff welcomes the opportunity to design custom thrust bearings for your specialty applications.

## Double Acting Thrust...

- Standard 600 \& 700 Series.
- Aligning Style (DAT).
- Non-Aligning Style (DT).
- Simplified Double Acting (SDT).
- Special Made To Order.


Combination Radial - Thrust...

- Made To Order.
- Special Materials.



## Screw Down Thrust...

- Cylindrical Roller.
- TTHD Style.
- T-Flat Style.
- Concave and Convex Designs.



## Special Modifications and Materials...

## Standard Modifications...

- Non-Typical sizes, range from 1" I.D. to 42" O.D.
- Metric 29000 Series Cylindrical Thrust to replace Spherical Thrust.
- Anti-Rotation Features.
- Plates with Brass Bushings.


## Special Modifications...

- Special Materials...
- Plates and Rollers - M-50 tool steel, Carburizing steel and VIMVAR grade steel.
- Retainers - Cast Iron and Phenolic.
- Special retainer designs for high speed applications.
- Cantilever designs for minimal housing and shaft shoulder contact.
- Thin Dense Nodular Chrome Plate (TDC).
- Special Custom Designs in low quantities.


Aligning Thrust


Double Acting Thrust


Tandem Thrust in Twin Screw Extruder


Rotary Swivel


Hook Used On Drilling Rig


Tapered Thrust in Single Screw Extruder


## $\boldsymbol{R}_{\text {ROLLWA! }}$

## Literature to help you...

Apply, Identify, Specify and Interchange


RAB-OIL99 ROLLWAY ${ }^{\circledR}$ Roller Bearings for Oilfield Equipment

PL-99-1 ROLLWAY
Bearing Product Line
Overview

ROLLWAY Sphericals Dimensions and capacities

DSC597 ROLLWAY Service Catalog Identification and interchange guide of the Cylindrical and Thrust product lines

Form 8678 H.O.T. ${ }^{\text {TM }}$ Bearings High Operational Temperature Bearing information sheet


RAB-MI98 ROLLWAY ${ }^{\circledR}$ Roller Bearings for the Metals Industry


# $\boldsymbol{R}_{\text {rollway }}$ Journal Roller Bearings... 

ROLLWAY ${ }^{\circledR}$ Steel Cage Journal Bearings are the same Basic 200 and 300 Series " 3 piece bearings" that we have been supplied over the past 50 years.

- They are available as complete assemblies or as components.
- Races and Rollers are manufactured from high quality bearing grade steel and are hardened to Rc 58 minimum.
- Roller assemblies have flush ground ends.
- All outer rings are supplied with oil holes.


ROLLWAU

## Steel Cage Journal Bearings... <br> Are Designed and Built To Industry Standards.

They Can Be Purchased As Complete Assemblies Or As Components.


| COMPLETE ASSEMBLY | COMPONENTS |  |  | $\begin{gathered} \hline \text { B } \\ \text { MM } \end{gathered}$ | $\begin{gathered} \hline \mathrm{D} \\ \text { MM } \end{gathered}$ | $\begin{aligned} & \text { W } \\ & \text { IN. } \end{aligned}$ | Dir IN. | $\overline{\mathrm{Rd}}$IN. | $\begin{gathered} \text { ri } \\ \text { IN. } \end{gathered}$ | $\begin{aligned} & \text { ro } \\ & \text { IN. } \end{aligned}$ | $\begin{gathered} \text { H } \\ \text { IN. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | INNER RING | OUTER RING | ROLLER ASSEMBLY |  |  |  |  |  |  |  |  |
| D-305-18 | E-305-18-60 | B-305-18-70 | WS-305-18 | 25 | 62 | $11 / 8$ | $11 / 4$ | 0.4375 | 0.062 | 0.062 | 0.25 |
| D-206-13 | E-206-13-60 | B-206-13-70 | WS-206-13 | 30 | 62 | 13/16 | $11 / 2$ | 0.3125 | 0.062 | 0.062 | 0.25 |
| D-206-18 | E-206-18-60 | B-206-18-70 | WS-206-18 | 30 | 62 | $11 / 8$ | $11 / 2$ | 0.3125 | 0.062 | 0.062 | 0.25 |
| D-207-15 | E-207-15-60 | B-207-15-70 | WS-207-15 | 35 | 72 | 15/16 | $13 / 4$ | 0.375 | 0.062 | 0.062 | 0.25 |
| D-207-19 | E-207-19-60 | B-207-19-70 | WS-207-19 | 35 | 72 | $13 / 16$ | $13 / 4$ | 0.375 | 0.062 | 0.062 | 0.25 |
| D-307 | E-307-60 | B-307-70 | WS-307 | 35 | 80 | $13 / 8$ | $13 / 4$ | 0.5 | 0.062 | 0.062 | 0.25 |
| D-208-16 | E-208-16-60 | B-208-16-70 | WS-208-16 | 40 | 80 | 1 | 2 | 0.375 | 0.078 | 0.078 | 0.25 |
| D-208-22 | E-208-22-60 | B-208-22-70 | WS-208-22 | 40 | 80 | $13 / 8$ | 2 | 0.375 | 0.078 | 0.078 | 0.25 |
| D-209-18 | E-209-18-60 | B-209-18-70 | WS-209-18 | 45 | 85 | $11 / 8$ | $23 / 16$ | 0.375 | 0.078 | 0.078 | 0.25 |
| D-209-25 | E-209-25-60 | B-209-25-70 | WS-209-25 | 45 | 85 | 19/16 | $23 / 16$ | 0.375 | 0.078 | 0.078 | 0.25 |
| D-309 | E-309-60 | B-309-70 | WS-309 | 45 | 100 | 19/16 | $21 / 4$ | 0.625 | 0.094 | 0.078 | 0.313 |
| D-210-20 | E-210-20-60 | B-210-20-70 | WS-210-20 | 50 | 90 | $11 / 4$ | $23 / 8$ | 0.375 | 0.078 | 0.078 | 0.313 |
| D-210-28 | E-210-28-60 | B-210-28-70 | WS-210-28 | 50 | 90 | $13 / 4$ | $23 / 8$ | 0.375 | 0.078 | 0.078 | 0.313 |
| D-210-56 | E-210-56-60 | B-210-56-70 | WS-210-28 (X2) | 50 | 90 | $31 / 2$ | $23 / 8$ | 0.375 | 0.078 | 0.078 | 0.313 |
| D-211 | E-211-60 | B-211-70 | WS-211 | 55 | 100 | $15 / 16$ | $25 / 8$ | 0.4375 | 0.094 | 0.078 | 0.313 |
| D-211-29 | E-211-29-60 | B-211-29-70 | WS-211-29 | 55 | 100 | 113/16 | $25 / 8$ | 0.4375 | 0.094 | 0.078 | 0.313 |
| D-211-58 | E-211-58-60 | B-211-58-70 | WS-211-58 | 55 | 100 | $35 / 8$ | $25 / 8$ | 0.4375 | 0.094 | 0.078 | 0.313 |
| D-311 | E-311-60 | B-311-70 | WS-311 | 55 | 120 | 115/16 | $23 / 4$ | 0.6875 | 0.109 | 0.109 | 0.375 |
| D-212 | E-212-60 | B-212-70 | WS-212 | 60 | 110 | 17/16 | $27 / 8$ | 0.5 | 0.094 | 0.094 | 0.313 |
| D-212-31 | E-212-31-60 | B-212-31-70 | WS-212-31 | 60 | 110 | 115/16 | $27 / 8$ | 0.5 | 0.094 | 0.094 | 0.313 |
| D-212-62 | E-212-62-60 | B-212-62-70 | WS-212-31 (X2) | 60 | 110 | $37 / 8$ | $27 / 8$ | 0.5 | 0.094 | 0.094 | 0.313 |
| D-213 | E-213-60 | B-213-70 | WS-213 | 65 | 120 | $11 / 2$ | $31 / 8$ | 0.5 | 0.109 | 0.109 | 0.375 |
| D-213-33 | E-213-33-60 | B-213-33-70 | WS-213-33 | 65 | 120 | $21 / 16$ | $31 / 8$ | 0.5 | 0.109 | 0.109 | 0.375 |
| D-313-35 | E-313-35-60 | B-313-35-70 | WS-313-35 | 65 | 140 | $23 / 16$ | $31 / 4$ | 0.8125 | 0.125 | 0.125 | 0.4375 |
| D-313 | E-313-60 | B-313-70 | WS-313 | 65 | 140 | 25/16 | $31 / 4$ | 0.8125 | 0.125 | 0.125 | 0.4375 |
| D-214-26 | E-214-26-60 | B-214-26-70 | WS-214-26 | 70 | 125 | 15/8 | $35 / 16$ | 0.5 | 0.109 | 0.109 | 0.375 |
| D-214-38 | E-214-38-60 | B-214-38-70 | WS-214-38 | 70 | 125 | $23 / 8$ | $35 / 16$ | 0.5 | 0.109 | 0.109 | 0.375 |
| D-214-76 | E-214-76-60 | B-214-76-70 | WS-214-38 (X2) | 70 | 125 | $43 / 4$ | $35 / 16$ | 0.5 | 0.109 | 0.109 | 0.375 |
| D-215 | E-215-60 | B-215-70 | WS-215 | 75 | 130 | $15 / 8$ | $31 / 2$ | 0.5 | 0.109 | 0.109 | 0.375 |
| D-215-28 | E-215-28-60 | B-215-28-70 | WS-215-28 | 75 | 130 | $13 / 4$ | $31 / 2$ | 0.5 | 0.109 | 0.109 | 0.375 |
| D-215-42 | E-215-42-60 | B-215-42-70 | WS-215-42 | 75 | 130 | $25 / 8$ | $31 / 2$ | 0.5 | 0.109 | 0.109 | 0.375 |
| D-215-84 | E-215-84-60 | B-215-84-70 | WS-215-42 (X2) | 75 | 130 | $51 / 4$ | $31 / 2$ | 0.5 | 0.109 | 0.109 | 0.375 |
| D-315-39 | E-315-39-60 | B-315-39-70 | WS-315-39 | 75 | 160 | 27/16 | $33 / 4$ | 0.9375 | 0.156 | 0.125 | 0.4375 |
| D-216 | E-216-60 | B-216-70 | WS-216 | 80 | 140 | $13 / 4$ | $33 / 4$ | 0.5625 | 0.125 | 0.125 | 0.4375 |
| D-216-29 | E-216-29-60 | B-216-29-70 | WS-216-29 | 80 | 140 | 113/16 | $33 / 4$ | 0.5625 | 0.125 | 0.125 | 0.4375 |
| D-216-42 | E-216-42-60 | B-216-42-70 | WS-216-42 | 80 | 140 | $25 / 8$ | $33 / 4$ | 0.5625 | 0.125 | 0.125 | 0.4375 |
| D-216-84 | E-216-84-60 | B-216-84-70 | WS-216-42 (X2) | 80 | 140 | $51 / 4$ | $33 / 4$ | 0.5625 | 0.125 | 0.125 | 0.4375 |
| D-316 | E-316-60 | B-316-70 | WS-316 | 80 | 170 | $211 / 16$ | 4 | 1 | 0.156 | 0.125 | 0.4375 |
| D-217 | E-217-60 | B-217-70 | WS-217 | 85 | 150 | 115/16 | 4 | 0.625 | 0.125 | 0.125 | 0.4375 |
| D-217-44 | E-217-44-60 | B-217-44-70 | WS-217-44 | 85 | 150 | $23 / 4$ | 4 | 0.625 | 0.125 | 0.125 | 0.4375 |
| D-317 | E-314-60 | B-317-70 | WS-317 | 85 | - | $27 / 8$ | $41 / 4$ | 1 | 0.156 | 0.156 | 0.563 |

STEEL CAGE JOURNAL ROLLER BEARINGS


Assembly D-XXX


Outer Ring \& Roller
Assembly
B-XXX


Outer Ring
Only
B-XXX-70


Roller Assembly
Only
WS-XXX


Inner Ring
Only
E-XXX-60

| COMPLETE ASSEMBLY | COMPONENTS |  |  | $\begin{gathered} \hline \text { B } \\ \text { MM } \end{gathered}$ | $\begin{gathered} \hline \mathrm{D} \\ \text { MM } \end{gathered}$ | $\begin{aligned} & \text { W } \\ & \text { IN. } \end{aligned}$ | Dir <br> IN. | $\begin{aligned} & \text { Rd } \\ & \text { IN. } \end{aligned}$ | $\begin{gathered} \text { ri } \\ \text { IN. } \end{gathered}$ | $\begin{aligned} & \text { ro } \\ & \text { IN. } \end{aligned}$ | $\begin{gathered} \text { H } \\ \text { IN. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | INNER RING | OUTER RING | ROLLER ASSEMBLY |  |  |  |  |  |  |  |  |
| D-218 | E-218-60 | B-218-70 | WS-218 | 90 | 160 | $21 / 16$ | $41 / 4$ | 0.6875 | 0.125 | 0.125 | 0.4375 |
| D-218-45 | E-218-45-60 | B-218-45-70 | WS-218-45 | 90 | 160 | $213 / 16$ | $41 / 4$ | 0.6875 | 0.125 | 0.125 | 0.4375 |
| D-219 | E-219-60 | B-219-70 | WS-219 | 95 | 170 | $23 / 16$ | $41 / 2$ | 0.75 | 0.156 | 0.125 | 0.4375 |
| D-219-48 | E-219-48-60 | B-219-48-70 | WS-219-48 | 95 | 170 | 3 | $41 / 2$ | 0.75 | 0.156 | 0.125 | 0.4375 |
| D-319 | E-319-60 | B-319-70 | WS-319 | 95 | 200 | $31 / 16$ | $43 / 4$ | 1.125 | 0.187 | 0.156 | 0.563 |
| D-319-50 | E-319-50-60 | B-319-50-70 | WS-319-50 | 95 | 200 | $31 / 8$ | $43 / 4$ | 1.125 | 0.187 | 0.156 | 0.563 |
| D-220-37 | E-220-37-60 | B-220-37-70 | WS-220-37 | 100 | 180 | 25/16 | $43 / 4$ | 0.75 | 0.156 | 0.156 | 0.563 |
| D-220 | E-220-60 | B-220-70 | WS-220 | 100 | 180 | $23 / 8$ | $43 / 4$ | 0.75 | 0.156 | 0.156 | 0.563 |
| D-220-52 | E-220-52-60 | B-220-52-70 | WS-220-52 | 100 | 180 | $31 / 4$ | $43 / 4$ | 0.75 | 0.156 | 0.156 | 0.563 |
| D-220-104 | E-220-104-60 | B-220-104-70 | WS-220-52 (X2) | 100 | 180 | $61 / 2$ | $43 / 4$ | 0.75 | 0.156 | 0.156 | 0.563 |
| D-320 | E-320-60 | B-320-70 | WS-320 | 100 | 215 | $31 / 4$ | 5 | 1.25 | 0.187 | 0.187 | 0.563 |
| D-222-41 | E-222-41-60 | B-222-41-70 | WS-222-41 | 110 | 200 | $27 / 16$ | $51 / 4$ | 0.875 | 0.156 | 0.156 | 0.563 |
| D-222 | E-222-60 | B-222-70 | WS-222 | 110 | 200 | $23 / 4$ | $51 / 4$ | 0.875 | 0.156 | 0.156 | 0.563 |
| D-222-56 | E-222-56-60 | B-222-56-70 | WS-222-56 | 110 | 200 | $31 / 2$ | $51 / 4$ | 0.875 | 0.156 | 0.156 | 0.563 |
| D-222-112 | E-222-112-60 | B-222-112-70 | WS-222-56 (X2) | 110 | 200 | 7 | $51 / 4$ | 0.875 | 0.156 | 0.156 | 0.563 |
| D-322 | E-322-60 | B-322-70 | WS-322 | 110 | 240 | $35 / 8$ | $51 / 2$ | 1.375 | 0.219 | 0.219 | 0.563 |
| D-322-60 | E-322-60-60 | B-322-60-70 | WS-322-60 | 110 | 240 | $33 / 4$ | $51 / 2$ | 1.375 | 0.219 | 0.219 | 0.563 |
| D-224-45 | E-224-45-60 | B-224-45-70 | WS-224-45 | 120 | 215 | $213 / 16$ | 5 5/8 | 0.9375 | 0.156 | 0.187 | 0.563 |
| D-224 | E-224-60 | B-224-70 | WS-224 | 120 | 215 | 3 | 5 5/8 | 0.9375 | 0.156 | 0.187 | 0.563 |
| D-224-62 | E-224-62-60 | B-224-62-70 | WS-224-62 | 120 | 215 | $37 / 8$ | 5 5/8 | 0.9375 | 0.156 | 0.187 | 0.563 |
| D-324 | E-324-60 | B-324-70 | WS-324 | 120 | 260 | $41 / 8$ | $61 / 16$ | 1.375 | 0.25 | 0.25 | 0.563 |
| D-226 | E-226-60 | B-226-70 | WS-226 | 130 | 230 | $31 / 8$ | $61 / 16$ | 1 | 0.156 | 0.187 | 0.563 |
| D-226-68 | E-226-68-60 | B-226-68-70 | WS-226-68 | 130 | 230 | $41 / 4$ | $61 / 16$ | 1 | 0.156 | 0.187 | 0.563 |
| D-226-136 | E-226-136-60 | B-226-136-70 | WS-226-68 (X2) | 130 | 230 | $81 / 2$ | $61 / 16$ | 1 | 0.156 | 0.187 | 0.563 |
| D-326 | E-326-60 | B-326-70 | WS-326 | 130 | 280 | $43 / 8$ | $67 / 16$ | 1.5 | 0.25 | 0.25 | 0.563 |
| D-228 | E-228-60 | B-228-70 | WS-228 | 140 | 250 | $31 / 4$ | $65 / 8$ | 1.0625 | 0.219 | 0.219 | 0.563 |
| D-228-76 | E-228-76-60 | B-228-76-70 | WS-228-76 | 140 | 250 | $43 / 4$ | $65 / 8$ | 1.0625 | 0.219 | 0.219 | 0.563 |
| D-228-152 | E-228-152-60 | B-228-152-70 | WS-228-76 (X2) | 140 | 250 | $91 / 2$ | $65 / 8$ | 1.0625 | 0.219 | 0.219 | 0.563 |
| D-230 | E-230-60 | B-230-70 | WS-230 | 150 | 270 | $31 / 2$ | $71 / 16$ | 1.1875 | 0.219 | 0.219 | 0.625 |
| D-230-76 | E-230-76-60 | B-230-76-70 | WS-230-76 | 150 | 270 | $43 / 4$ | $71 / 16$ | 1.1875 | 0.219 | 0.219 | 0.625 |
| D-232 | E-232-60 | B-232-70 | WS-232 | 160 | 290 | $37 / 8$ | $75 / 8$ | 1.25 | 0.25 | 0.25 | 0.625 |
| D-232-78 | E-232-78-60 | B-323-78-70 | WS-232-78 | 160 | 290 | $47 / 8$ | 75/8 | 1.25 | 0.25 | 0.25 | 0.625 |
| D-232-156 | E-232-156-60 | B-232-156-70 | WS-232-78 (X2) | 160 | 290 | $93 / 4$ | $75 / 8$ | 1.25 | 0.25 | 0.25 | 0.625 |
| D-234-86 | E-234-86-60 | B-234-86-70 | WS-234-86 | 170 | 310 | $53 / 8$ | $81 / 16$ | 1.375 | 0.25 | 0.25 | 0.688 |
| D-234-172 | E-234-172-60 | B-234-172-70 | WS-234-86 (X2) | 170 | 310 | $103 / 4$ | $81 / 16$ | 1.375 | 0.25 | 0.25 | 0.688 |
| D-236 | E-236-60 | B-236-70 | WS-236 | 180 | 320 | $41 / 4$ | $815 / 32$ | 1.375 | 0.25 | 0.25 | 0.688 |
| D-236-94 | E-236-94-60 | B-236-94-70 | WS-236-94 | 180 | 320 | $57 / 8$ | $815 / 32$ | 1.375 | 0.25 | 0.25 | 0.688 |
| SD-240 | SE-240-60 | SB-240-70 | SWS-240 | 200 | 340 | $43 / 4$ | $91 / 4$ | 1.375 | 0.25 | 0.25 | 0.688 |
| SD240-110 | SE-240-110-60 | SB-240-110-70 | SWS-240-110 | 200 | 340 | $67 / 8$ | $91 / 4$ | 1.375 | 0.25 | 0.25 | 0.688 |
| SD-244-110 | SE-244-110-60 | SB-244-110-70 | SWS-244-110 | 220 | 380 | $67 / 8$ | $107 / 16$ | 1.375 | 0.25 | 0.25 | 0.688 |

## $\boldsymbol{R}_{\text {ROLLWAS }}$ Engineering Section...

## TABLE OF CONTENTS

## Engineering

1. Gaging Practices

Page 61 \& 62
2. Tolerances
A. Radial Bearings, RBEC 1, 3 \& 5 ......................................................................... Page 63 \& 64
B. Journal Bearings Page 64
C. Thrust Bearings

Page 65 thru 67
3. Life - Load - Speed ..................................................................................................... Page 68 thru 72
4. Fitting Practice
A. Radial Bearing Unmounted Internal Clearance ................................................Page 72 thru 75
B. Radial Bearing Mounting Practice - Shaft and Housing Fits .............................. Page 76 thru 78
C. Thrust Bearing Mounting Practice - Shaft and Housing Fits .............................. Page 79 thru 81
D. Journal Bearing - Shaft and Housing Fits Page 82
5. Lubrication

Page 83 thru 87

## ENGINEERING SUPPORT

It is the our policy to extend the facilities and experience of our Engineering Department to those who solicit advice for bearing problems. Please contact ROLLWAY Engineering Department.

Information submitted on a proposed bearing installation should be as complete as possible. The following is a guide on data to be submitted:
A. Type of application.
B. Magnitude and direction of bearing loads.
C. Approximate shock loads.
D. Data relative to speed and direction of rotation of shaft or housing.
E. Desired life expectancy (hours).
F. Space limitation with respect to shaft diameter, housing bore, and bearing width.
G. Conformation of the shaft housing, and surrounding parts. This will determine the type of bearing most suitable for the application.
H. Temperature conditions.
I. Type of lubrication, lubricant characteristics.
J. Information on the surrounding media if the bearing is to operate in the presence of moisture, dust, or chemicals.
It is important to include a basic assembly drawing of the application. All information submitted will be considered confidential.

## GAGING PRACTICE...

Measurement of the various dimensions and runouts can be performed in various ways by using different types of gaging equipment and with varying degrees of accuracy. The following methods are commonly employed by bearing users and, as a rule, give an accuracy sufficient for practical purposes. Bearing manufacturers may use specially designed gaging equipment to increase the accuracy and speed of gaging.
Measurements are performed by comparing the part with appropriate gauge blocks or masters which conform with those used by the National Bureau of Standards at $68^{\circ} \mathrm{F}$. For this comparison, a calibrated indicator of appropriate sensitivity is used, and the part to be measured, the indicator, and the gauge block or master must be brought to the temperature of the room in which the measurements are to be made.
To avoid undue deflection of thin rings, indicator pressures should be minimized. If significant distortion is present, a load-deflection factor should be introduced to correct the measurement to the free unloaded value. In all cases when arbor methods of measuring runout are used, the rotational accuracy of the arbor must be determined so that subsequent bearing measurements may be suitably corrected if appreciable arbor inaccuracy is involved.

Bore of Inner Race - For determining bore diameter, use an apparatus arranged for two-point measuring. Measure single diameters in at least three angular directions and at least two radial planes. In this manner $\mathrm{B}_{\text {min }}$ and $\mathrm{B}_{\text {max }}$ are established, from which the mean diameter is obtained by:

$$
B_{\mathrm{m}}=\frac{B_{\min }+B_{\max }}{2}
$$

If the size or section of the bearing inner race is such that, with the bearing axis in a horizontal position, the bore or OD measurement is influenced by gravity, the bearing should be placed with the axis in a vertical position. If necessary, a smaller gage load should be used.

Width of Inner Race - Support one side of the inner race on three buttons and position an indicator against the other side of the inner race directly opposite one button. Take indicator readings while rotating the inner race one revolution.

Width Variation of Inner Race - Use the same method as applied to measuring of the width.


Reference Side Runout With Bore - Mount the bearing on an arbor having a taper of .0001 to .0002 inch in diameter per inch of length, and position the arbor between two accurate centers so that it can be rotated. Apply an indicator against the reference side of the inner race on a diameter as equal to the raceway diameter as possible. Take indicator readings while rotating the inner ring one revolution. Correction must be made for inaccuracy of the arbor.


Outside Diameter of Outer Race - For determining outside diameter, use apparatus arranged for two-point measuring. Measure single diameters in at least three angular directions and two radial planes. In this manner $\mathrm{D}_{\text {min }}$ and $D_{\text {max }}$ are established, from which the mean diameter is obtained by:

$$
D_{\mathrm{m}}=\frac{D_{\min }+D_{\max }}{2}
$$

If the size or section of the bearing outer race is such that, with the bearing axis in a horizontal position, the bore or OD measurement is influenced by gravity, the bearing should be placed with the axis in a vertical position. If necessary, a smaller gauge load should be used.

## GAGING PRACTICE...

Width of Outer Race - Support one side of the outer race on three buttons and position an indicator against the other side of the outer race directly opposite one button. Take indicator readings while rotating the outer race one revolution.

Width Variation of Outer Race - Use the same method as applied to measuring of the width.


## Outside Diameter

Runout With Reference Side - Support the reference side of the outer race and locate the outside diameter against a stop at a distance of 3.5 times the maximum housing fillet radius $r$ (which the bearing chamfer must clear) from the lower side surface. Position an indicator directly above the stop at a distance of 3.5 times the maximum housing fillet radius $r$ (which the bearing chamfer must clear) from the upper side surface. Take indicator readings while rotating the outer race one revolution.

Inner Race Radial Runout - Mount the bearing on an arbor having a taper of .0001 to .0002 inch in diameter per inch of length and position the arbor between two accurate centers, or other suitable supports, so that it can be rotated. Place an indicator against the OD and in the plane of the centerline. Hold the outer race stationary and take indicator readings while rotating the inner race one revolution.

Outer Race Radial Runout - Mount the bearing on an arbor having a taper of .0001 to .0002 inch in diameter per inch of length and position the arbor between two accurate centers, or other suitable supports, so that it is firmly located. Place an indicator against the OD and in the plane of the centerline. Take indicator readings while rotating the outer race one revolution.

## TOLERANCES

Radial Roller Bearing Tolerances...
Unless otherwise specified all ROLLWAY ${ }^{\circledR}$ Radial Roller Bearings are manufactured to ABMA's RBEC-1 Precision Class.

## Standard Tolerances RBEC-1

| Bore Diameter mm |  | Bore Diameter inch |  | Bore Tolerance inch |  | Width Tolerance inch |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| over | incl | over | incl | high (+) | low (-) | high (+) | low (-) |
| 0 | 30 | 0.0000 | 1.1810 | 0.0000 | 0.0004 | 0.0000 | 0.0047 |
| 30 | 50 | 1.1810 | 1.9685 | 0.0000 | 0.0005 | 0.0000 | 0.0047 |
| 50 | 80 | 1.9685 | 3.1496 | 0.0000 | 0.0006 | 0.0000 | 0.0059 |
| 80 | 120 | 3.1496 | 4.7244 | 0.0000 | 0.0008 | 0.0000 | 0.0079 |
| 120 | 180 | 4.7244 | 7.0866 | 0.0000 | 0.0010 | 0.0000 | 0.0098 |
| 180 | 250 | 7.0866 | 9.8425 | 0.0000 | 0.0012 | 0.0000 | 0.0118 |
| 250 | 315 | 9.8425 | 12.4016 | 0.0000 | 0.0014 | 0.0000 | 0.0138 |
| 315 | 400 | 12.4016 | 15.7480 | 0.0000 | 0.0016 | 0.0000 | 0.0157 |
| 400 | 500 | 15.7480 | 19.6850 | 0.0000 | 0.0018 | 0.0000 | 0.0177 |
| 500 | 630 | 19.6850 | 24.8031 | 0.0000 | 0.0020 | 0.0000 | 0.0197 |
| 630 | 800 | 24.8031 | 31.4961 | 0.0000 | 0.0030 | 0.0000 | 0.0295 |


| Outside Diameter mm |  | Outside Diameter inch <br> over |  |
| :---: | :---: | :---: | :---: |
| incl | incl | Outside Diameter Tolerance inch <br> high $(+)$ |  |
| 0 | 50 | 1.1811 | 1.9685 |
| low $(-)$ |  |  |  |

## Tolerances RBEC-3

| Bore Diameter mm |  | Bore Diameter inch |  | Bore Tolerance inch |  | Width Tolerance inch |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| over | incl | over | incl | high (+) | low (-) | high (+) | low (-) |
| 0 | 30 | 0.0000 | 1.1810 | 0.0000 | 0.00030 | 0.0000 | 0.0047 |
| 30 | 50 | 1.1810 | 1.9685 | 0.0000 | 0.00040 | 0.0000 | 0.0047 |
| 50 | 80 | 1.9685 | 3.1496 | 0.0000 | 0.00045 | 0.0000 | 0.0059 |
| 80 | 120 | 3.1496 | 4.7244 | 0.0000 | 0.00060 | 0.0000 | 0.0079 |
| 120 | 180 | 4.7244 | 7.0866 | 0.0000 | 0.00070 | 0.0000 | 0.0098 |
| 180 | 250 | 7.0866 | 9.8425 | 0.0000 | 0.00085 | 0.0000 | 0.0118 |
| 250 | 315 | 9.8425 | 12.4016 | 0.0000 | 0.00100 | 0.0000 | 0.0138 |
| 315 | 400 | 12.4016 | 15.7480 | 0.0000 | 0.00120 | 0.0000 | 0.0157 |
| 400 | 500 | 15.7480 | 19.6850 | 0.0000 | 0.00140 | 0.0000 | 0.0177 |
| 500 | 630 | 19.6850 | 24.8031 | 0.0000 | 0.00600 | 0.0000 | 0.0197 |


| Outside Diameter mm |  | Outside Diameter inch |  | incl |
| :---: | :---: | :---: | :---: | :---: |
| over | incl | Outside Diameter Tolerance inch <br> high $(+)$ |  |  |
| 0 | 50 | 1.1811 | 1.9685 | 0.0000 |
| 50 | 80 | 1.9685 | 3.1496 | 0.0000 |
| 80 | 120 | 3.1496 | 4.7244 | 0.0000 |
| 120 | 150 | 4.7244 | 5.9055 | 0.0000 |
| 150 | 180 | 5.9055 | 7.0866 | 0.0000 |
| 180 | 250 | 7.0866 | 9.8425 | 0.00045 |
| 250 | 315 | 9.8425 | 12.4016 | 0.00050 |
| 315 | 400 | 12.4016 | 15.7480 | 0.00060 |
| 400 | 500 | 15.7480 | 19.6850 | 0.00070 |
| 500 | 630 | 19.6850 | 24.8031 | 0.0000 |
| 630 | 800 | 24.8031 | 31.4961 | 0.0000 |

ROLLWA
TOLERANCES

## Radial Roller Bearings

## Tolerances RBEC-5

| Bore Diameter mm |  | Bore Diameter inch |  | Bore Tolerance inch |  | Width Tolerance inch |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| over | incl | over | incl | high (+) | low (-) | high (+) | low (-) |
| 0 | 30 | 0.0000 | 1.1810 | 0.0000 | 0.00025 | 0.0000 | 0.0047 |
| 30 | 50 | 1.1810 | 1.9685 | 0.0000 | 0.00030 | 0.0000 | 0.0047 |
| 50 | 80 | 1.9685 | 3.1496 | 0.0000 | 0.00035 | 0.0000 | 0.0059 |
| 80 | 120 | 3.1496 | 4.7244 | 0.0000 | 0.00040 | 0.0000 | 0.0079 |
| 120 | 180 | 4.7244 | 7.0866 | 0.0000 | 0.00050 | 0.0000 | 0.0098 |
| 180 | 250 | 7.0866 | 9.8425 | 0.0000 | 0.00065 | 0.0000 | 0.0118 |
| 250 | 315 | 9.8425 | 12.4016 | 0.0000 | 0.00070 | 0.0000 | 0.0138 |
| 315 | 400 | 12.4016 | 15.7480 | 0.0000 | 0.00090 | 0.0000 | 0.0157 |


| Outside Diameter mm |  | Outside Diameter inch |  |
| :---: | :---: | :---: | :---: |
| over | incl | incl | Outside Diameter Tolerance inch <br> high (+) |
| 0 | 50 | 1.1811 | 1.9685 |
| low (-) |  |  |  |

## 200 \& 300 Series Journal Bearings (Wide Series Tolerances)

| Bore Diameter mm |  | Bore Diameter inch |  | incl |
| :---: | :---: | :---: | :---: | :---: |
| over | incl | over | 1.1811 | high (+) |
| 0 | 30 | 0.0000 | 1.9685 | 0.0000 |
| 30 | 50 | 1.1811 | 3.1496 | 0.0000 |
| 50 | 80 | 1.9685 | 4.7244 | 0.0000 |
| 80 | 120 | 3.1496 | 7.0866 | 0.0000 |
| 120 | 180 | 4.7244 | 0.6614 | 0.0000 |
| 180 | 220 | 7.0866 | 0.0000 |  |


| Outside Diameter mm |  | Outside Diameter inch <br> over |  |
| :---: | :---: | :---: | :---: |
| 0 | incl | over | Outside Diameter Tolerance inch <br> high $(+)$ |
| 80 | 120 | 0.0000 | 3.1496 |
| low $(-)$ |  |  |  |

ROLLWAS

## Thrust Bearings

600 Series, Single Direction, Flat Seats

| Bore Diameter | incl | Bore Tolerance | Height Tolerance |  |
| :---: | :---: | :---: | :---: | :---: |
| over | 1.1870 | 0.0000 | 0.0005 | 0.006 |
| 0.0000 | 1.3750 | 0.0000 | 0.0006 | 0.0007 |
| 1.1870 | 1.5620 | 0.0000 | 0.0008 | 0.0000 |
| 1.3750 | 1.7500 | 0.0000 | 0.0009 | 0.0000 |
| 1.5620 | 1.9370 | 0.0000 | 0.0010 | 0.0000 |
| 1.7500 | 2.0000 | 0.0000 | 0.0010 | 0.0000 |
| 1.9370 | 2.1250 | 0.0000 | 0.0011 | 0.0000 |
| 2.0000 | 2.5000 | 0.0000 | 0.0012 | 0.0000 |
| 2.1250 | 3.0000 | 0.0000 | 0.0013 | 0.0000 |
| 2.5000 | 3.5000 | 0.0000 | 0.0000 |  |
| 3.0000 |  |  | 0.0000 |  |


| Outside Diameter | Outside Diameter Tolerance |  |  |
| :---: | :---: | :---: | :---: |
| over low (-) |  |  |  |
| 0.0000 | 2.8750 | 0.0000 |  |
| 2.8750 | 3.3750 | 0.0005 | 0.0000 |
| 3.3750 | 3.7500 | 0.0007 | 0.0000 |
| 3.7500 | 4.1250 | 0.0009 | 0.0000 |
| 4.1250 | 4.7180 | 0.0011 | 0.0000 |
| 4.7180 | 5.0000 | 0.0013 | 0.0000 |

600 Series, Single Direction, Aligning Seat With Aligning Washers

| Bore Diameter |  | Bore Tolerance |  | Height Tolerance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| over | incl | over | incl | high (+) | low (-) |
| 0.0000 | 1.1870 | 0.0000 | 0.0005 | 0.0000 | 0.0060 |
| 1.1870 | 1.3750 | 0.0000 | 0.0006 | 0.0000 | 0.0060 |
| 1.3750 | 1.5620 | 0.0000 | 0.0007 | 0.0000 | 0.0060 |
| 1.5620 | 1.7500 | 0.0000 | 0.0008 | 0.0000 | 0.0060 |
| 1.7500 | 1.9370 | 0.0000 | 0.0009 | 0.0000 | 0.0060 |
| 1.9370 | 2.0000 | 0.0000 | 0.0010 | 0.0000 | 0.0060 |
| 2.0000 | 2.1250 | 0.0000 | 0.0010 | 0.0000 | 0.0080 |
| 2.1250 | 2.5000 | 0.0000 | 0.0011 | 0.0000 | 0.0080 |
| 2.5000 | 3.0000 | 0.0000 | 0.0012 | 0.0000 | 0.0080 |
| 3.0000 | 3.5000 | 0.0000 | 0.0013 | 0.0000 | 0.0100 |


| Outside Diameter | Outside Diameter Tolerance |  |  |
| :---: | :---: | :---: | :---: |
| over | incl | high (+) |  |
| 0.0000 | 3.0000 | 0.0007 | 0.0000 |
| 3.0000 | 3.3750 | 0.0009 | 0.0000 |
| 3.3750 | 3.6250 | 0.0011 | 0.0000 |
| 3.6250 | 3.8750 | 0.0013 | 0.0000 |
| 3.8750 | 4.5312 | 0.0015 | 0.0000 |
| 4.5312 | 5.0000 | 0.0017 | 0.0000 |

## Thrust Bearings

## 700 Series, Single Direction, Flat Seats

| Bore Diameter |  | Bore Tolerance |  | Height Tolerance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| over | incl | over | incl | high (+) | low (-) |
| 2.0000 | 3.0000 | 0.0000 | 0.0010 | 0.0000 | 0.0080 |
| 3.0000 | 3.5000 | 0.0000 | 0.0012 | 0.0000 | 0.0100 |
| 3.5000 | 6.0000 | 0.0000 | 0.0015 | 0.0000 | 0.0100 |
| 6.0000 | 9.0000 | 0.0000 | 0.0015 | 0.0000 | 0.0150 |
| 9.0000 | 10.0000 | 0.0000 | 0.0018 | 0.0000 | 0.0150 |
| 10.0000 | 12.0000 | 0.0000 | 0.0018 | 0.0000 | 0.0200 |
| 12.0000 | 18.0000 | 0.0000 | 0.0020 | 0.0000 | 0.0200 |
| 18.0000 | 22.0000 | 0.0000 | 0.0025 | 0.0000 | 0.0250 |
| 22.0000 | 30.0000 | 0.0000 | 0.0030 | 0.0000 | 0.0250 |


|  | Outside Diameter | Outside Diameter Tolerance |  |
| :---: | :---: | :---: | :---: |
| over | incl | high + ) | 0.0015 |
| 5.0000 | 10.0000 | 0.0020 | 0.0000 |
| 10.0000 | 18.0000 | 0.0025 | 0.0000 |
| 18.0000 | 26.0000 | 0.0030 | 0.0000 |
| 26.0000 | 34.0000 | 0.0040 | 0.0000 |
| 34.0000 | 44.0000 |  |  |

## 700 Series, Single Direction, Aligning Seat With Aligning Washers

| Bore Diameter |  | Bore Tolerance |  | Height Tolerance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| over | incl | over | incl | high (+) | low (-) |
| 2.0000 | 3.0000 | 0.0000 | 0.0010 | 0.0000 | 0.0100 |
| 3.0000 | 3.5000 | 0.0000 | 0.0012 | 0.0000 | 0.0150 |
| 3.5000 | 6.0000 | 0.0000 | 0.0015 | 0.0000 | 0.0150 |
| 6.0000 | 9.0000 | 0.0000 | 0.0015 | 0.0000 | 0.0200 |
| 9.0000 | 10.0000 | 0.0000 | 0.0018 | 0.0000 | 0.0200 |
| 10.0000 | 12.0000 | 0.0000 | 0.0018 | 0.0000 | 0.0250 |
| 12.0000 | 18.0000 | 0.0000 | 0.0020 | 0.0000 | 0.0250 |
| 18.0000 | 22.0000 | 0.0000 | 0.0025 | 0.0000 | 0.0300 |


|  | Outside Diameter | Outside Diameter Tolerance |  |
| :---: | :---: | :---: | :---: |
| over | incl | high ( + ) | 0.0000 |
| 5.0000 | 10.0000 | 0.0019 | 0.0000 |
| 10.0000 | 18.0000 | 0.0021 | 0.0000 |
| 18.0000 | 26.0000 | 0.0023 | 0.0000 |
| 26.0000 | 34.0000 | 0.0025 | 0.0000 |
| 34.0000 | 44.0000 | 0.0030 |  |

## Crane Hook

| BoreDiameter |  | Bore Tolerance |  | Height Tolerance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| over | incl | over | 0.0100 | 0.0000 |  |
| high $(+)$ | 0.0080 |  |  |  |  |
| 0.0000 | 2.0156 | 0.0100 | 0.0020 | 0.0000 |  |
| 2.0156 | 3.0156 | 0.0150 | 0.0020 | 0.0000 |  |
| 3.0156 | 6.0156 | 0.0150 | 0.0050 | 0.0000 |  |
| 6.0156 | 10.1560 |  | 0.0100 |  |  |


|  | Outside Diameter | Outside Diameter Tolerance |  |
| :---: | :---: | :---: | :---: |
| over | incl | high $(+)$ | 0.0050 |
| 2.5000 | 4.0000 | 0.0060 | 0.0050 |
| 4.0000 | 6.0000 | 0.0100 | 0.0100 |
| 6.0000 | 10.0000 | 0.0120 | 0.0120 |
| 10.0000 | 34.0000 |  |  |

Tapered Roller Thrust

|  | Bore Diameter |  | Bore Tolerance |
| :---: | :---: | :---: | :---: |
| over | incl | over | 0.0000 |
| 0.0000 | 12.0000 | 0.0010 | 0.0000 |
| 12.0000 | 24.0000 | 0.0020 | 0.0000 |
| 24.0000 | 36.0000 | 0.0030 | 0.0000 |
| 36.0000 | 48.0000 | 0.0040 |  |


|  | Outside Diameter | Outside Diameter Tolerance |  |
| :---: | :---: | :---: | :---: |
| over | incl | high (+) | 0.0010 |
| 0.0000 | 12.0000 | 0.0020 | 0.0000 |
| 12.0000 | 24.0000 | 0.0030 | 0.0000 |
| 24.0000 | 36.0000 | 0.0040 | 0.0000 |
| 36.000 | 48.0000 |  |  |


| Bore Diameter | Height Tolerance |  |  |
| :---: | :---: | :---: | :---: |
| over | incl | high (+) | low (-) |
|  | ALL SIZES | 0.0150 | 0.0150 |

ROLLWAU. encineering section

## LIFE - LOAD - CAPACITY - SPEED - RELATIONSHIP

## DYNAMIC CAPACITY AND LIFE

Knowing the external bearing load $\boldsymbol{P}$, and having selected a given bearing with a dynamic capacity $\boldsymbol{C}$, the minimum life in millions of revolutions is calculated as follows:

$$
\begin{array}{ll}
L=\left(\frac{C}{P}\right)^{3.33} & \left.\begin{array}{l}
\text { Where: } \\
\\
\\
P=\text { basic dynamic load } \\
\\
\hline
\end{array}\right)=\text { quivalent load }
\end{array}
$$

Alternately, if a given minimum life is desired and the external bearing load is know, solving for capacity indicates the bearing size required.

Often it is necessary to know the minimum life in hours $\left(L_{10}\right)$ at the known speed of operation. Using the rotational speed in RPM, the $L_{10}$ life in hours is calculated using the following equation:

$$
L_{10}=\left(\frac{C}{P}\right)^{3.33} \times \frac{16,667}{n} \quad \begin{aligned}
& \text { Where: } \\
& \\
&
\end{aligned} \begin{aligned}
& \mathrm{P}=\text { basic dynamic load } \\
& \mathrm{n}=\text { equivalent load }
\end{aligned}
$$

This formula relates minimum life in millions of revolutions to minimum life in hours through the standard, life-hour reference base of 500 hours, and the standard speed reference base of $331 / 3 \mathrm{rpm}$, as set forth in the ABMA Standards.

The significance of the above equation is that it permits a rapid solution for minimum life in hours $L_{10}$, based on a known ratio of dynamic capacity to external load $C / P$, and a known operating speed $n$. Conversely, for a given required life in hours $L_{10}$, at a know operating speed $n$, the ratio $C / P$ is thereby determined, and the bearing which is to be subjected to an external load of $\boldsymbol{P}$ must be selected to satisfy this latter ratio. As a general rule the C/P ratio should not be less than 4.

## OPERATING CONDITIONS FACTOR

The life of a bearing is dependent on the operating conditions of the application. Lubrication, effects of the external environment, shaft and housing geometry and mounting, all have an affect on the actual bearing life. To determine a more realistic life calculation, the Operating Conditions Factor (F) can be included into the $L_{10}$ life equation. The actual values determination will be based on experience of the designer and the expected operating conditions.
Using the Operating Conditions Factor (F) in the life equation, $\mathbf{L}_{10}$ life in hours now becomes:

$$
L_{10}=F \times\left[\left(\frac{C}{P}\right)^{3.33} \times \frac{16,667}{n}\right]
$$

Proper selection of the $F$ factor demands intimate knowledge of the application. Where little is known of the application, it is recommended that $F=1$ be selected. As a guide in selecting a realistic value for $F$, ROLLWAY suggests use of the following cumulative, individual sub-factors, f , to arrive at the over-all factor, $F$, thus:
$\mathrm{F}=f_{1} \mathrm{X} f_{2} \mathrm{X} f_{3} \mathrm{X} f_{4} \ldots$.
The table below defines the application parameters and values recommended for derivation of the individual sub-factors.

Radial Bearing Factors

| factor | application condition | factor estimates |  |
| :---: | :--- | :---: | :---: |
| Poor | Excellent |  |  |$|$| 1 | Lubricant viscosity suitability @ bearing operating <br> temperature (see Lubrication) | .5 | 1.0 |
| :---: | :---: | :---: | :---: |
| 2 | External environment and provisions for isolation | .5 | 1.0 |
| 3 | Operational conditions of shaft and housing <br> squareness \& rigidity | .5 | 1.0 |
| 4 | Machine usage; <br> conventional rotating machinery $=1.0$ <br> reciprocating machinery $=.55$ <br> impact-inducing machinery $=.25$ | .25 | 1.0 |
| 5 | Thrust load accompanying radial load; <br> below permissible thrust load $=1.0$ <br> at or near permissible thrust load $=.8$ <br> exceeding permissible thrust load by $25 \%=.5$ | .5 | 1.0 |

Thrust Bearing Factors

| factor | application condition | factor estimates <br> Poor |  |
| :---: | :--- | :--- | :---: |
| 1 | Lubricant viscosity suitability @ <br> bearing operating temperature (See <br> Lubrication) | .5 | 1.0 |
| 2 | External environment and provisions <br> for isolation | .5 | 1.0 |
| 3 | Operational conditions of shaft and <br> housing squareness \& rigidity | .5 | 1.0 |
| 4 | Bearing thrust plate backing system <br> full backing vs partial backing | .5 | 1.0 |

# LIFE - LOAD - CAPACITY - SPEED - RELATIONSHIP 

## RADIAL ROLLER BEARING THRUST CAPACITY

It is an established fact that cylindrical radial roller bearings with integral flange surfaces in the races are capable of sustaining appreciable thrust loads. Designers have recognized the existence of small thrust loads in certain applications, even though the analysis of the external forces indicates no thrust loads are present.
ROLLWAY Bearing has conducted performance and life tests on cylindrical roller bearings over a period of several years. Thrust capacity calculations shown in this catalog are based on the latest data. This research work has further established criteria for roller and race flange geometry in order to optimize performance, and life, under thrust loads.
Radial dynamic capacity is determined through a consideration of the fatigue strength of the bearing material. Thrust capacity is determined through a consideration of the sliding friction and resultant wear taking place between the roller ends and flange faces. Heat generated by the sliding friction must be effectively dissipated throughout the bearing components and by the lubricant in order to maintain thermal equilibrium at a reasonable temperature. The advantage of the cylindrical roller bearing under combined radial and thrust loads is apparent when it is observed that the radial load and the thrust load are taken by two different surfaces. In view of this, there should be no reduction in expected life, which is determined solely by the existing radial load, when thrust loads are also taken by the bearing.
Thrust capacity is dependent upon bearing design and application characteristics. Bearing design characteristics include:
a. Apparent contact area between roller ends and mating flange surfaces.
b. Surface finish of the mating surfaces.
c. Geometry of the mating surfaces.
d. Internal radial clearance and axial clearance of the roller in the roller track.

Application characteristics are a function of:
a. Sliding velocity at the contact surfaces (rpm and bearing size).
b. Quality and quantity of the lubricant and effectiveness of the lubrication system.
c. Type and duration of thrust loads.
d. Influence of the shaft and housing in heat dissipation.
e. Operating temperatures.

A radial bearing should not be used in applications where there are essentially large thrust loads with no significant radial loads. In most applications, machine masses are of sufficient magnitude to apply a substantial radial load on the bearing without external radial forces. In these cases there will normally be sufficient radial load to allow satisfactory operation under substantial thrust loads. As a general rule, ROLLWAY radial bearing thrust capacity is $10 \%$ of the published radial load rating.

## STATIC CAPACITY

The basic static capacity values in this catalog are formulated according to the industry-wide approved standards. The basic static capacity is the static load acting on a non-rotating bearing, which corresponds to a calculated contact stress at the center of the most heavily loaded rolling element raceway contact of $580,000 \mathrm{psi}$.

The concept of basic static capacity implies that the bearing will be called upon, after subjection of a static load equal to its static capacity, to perform satisfactorily at some appreciable rotational speed. Where subsequent rotation of the bearing is slow, a greater total permanent deformation can be tolerated and a greater static capacity can be used. For those cases where bearing smoothness and friction requirements are of no significance in the bearing application, and where it is evident that extremely high static loads will exist, it should be observed that the bearing fracture load is some 5 to 8 times the basic static capacity of the bearing.

## HIGH SPEED OPERATION

The critical factors influencing the performance of radial roller bearings at very high speeds include:
a. Retainer design, including its precision and dynamic balance.
b. The specific lubricant, and the form and manner in which it is directed into the bearing.
c. Basic internal radial clearance.
d. Basic bearing design, especially the number of rollers. (Designing the maximum number of rollers into a bearing does not always improve life and performance at very high speeds.)
All of these factors must be considered in bearing applications involving high speeds, and modifications to the standard bearing may be necessary for optimum performance.

ROLLWAL

## LIFE - LOAD - CAPACITY - SPEED - RELATIONSHIP

## HIGH SPEED OPERATION - continued

Centrifugal forces affect bearing life in high speed operation. The unified theory of dynamic capacity for rolling element bearings has, as the original premise, the fact that the pattern of load distribution within a bearing is independent of the bearing operating speed. Given very high speeds in bearing applications, the centrifugal force of the rollers assumes some importance. The consequence of this is a modification of the load distribution within a bearing, and an exhibited fatigue life that cannot be estimated according to the standard life formula $L=(C / P)^{3.33}$. The centrifugal force exerted by the rollers results in:
a. Additional loading of the outer race around its entire circumference.
b. A diminution of the loaded zone on the circumference of the inner race.
c. The possible initiation of roller skidding, with ensuing roller "frosting", accompanied by high frictional losses due to a varying retainer velocity. Incipient roller skidding occurs when the magnitude of the centrifugal force approaches the individual roller loads, considering conventional load zone.
Each of these effects causes a reduction in bearing life from that calculated conventionally. The determining factor influencing the reduction of bearing life due to very high speed is the relative magnitude of the centrifugal force exerted by the rollers which is dependent on bearing design as well as rotational speed.
If the centrifugal force is small compared with the maximum roller load, life reduction is small and life may be calculated in the usual manner. Conversely, if the centrifugal force is large compared with the maximum roller load, life reduction is appreciable, and life cannot be calculated in the usual manner. Assistance of the ROLLWAY Engineering Department will enable an accurate forecast for fatigue life to be made. Special ROLLWAY bearing designs incorporating hollow rollers are readily available for applications involving medium loads and very high speeds. The ROLLWAY ${ }^{\circledR}$ hollow roller bearings have been proven by in-house and field testing and have successfully solved many high speed application problems, especially in the range $\mathrm{d}_{\mathrm{m}} \mathrm{n}>1.25 \times 10^{6}$ and where $C / P=10$.
High speed operation can also produce bearing application failure modes not associated with the fatigue life concept. In particular, rotating systems can induce conditions of instability which could result in premature bearing failure. In applications where the bearing shaft centerline experiences radial excursions, the dynamic excitation may induce objectionable noise at the very least, or, in the extreme, total bearing destruction.
Cases of seemingly moderate speeds can assume the characteristics of very high speeds on bearing operation when considering bearings in rotating planets. In this case retainer design and proper dynamic balance assume great importance.

## VARIABLE LOAD AND SPEED

Constant bearing loads are not always encountered. Often, variable loads and/or speeds are found to exist. The machine designer will frequently use the maximum value of radial load and make the bearing selection accordingly. This results in the selection of a bearing which has more capacity than necessary. If the designer uses the arithmetical average load, then the bearing selected will have a capacity which is too low, and consequently actual life will be below expected life due to life varying inversely with the 3.33 power of the load.
It is therefore necessary that variable loads and/or speeds be resolved in such a manner as to yield a mean equivalent load which may be calculated by mathematical expressions as shown below.
Presented below are three relationships which will serve as an aid in arriving at the equivalent mean load.
(a) If speed is constant and load varies gradually over a long period of time from a certain minimum value to a larger maximum value, then:

$$
P=\frac{P_{\min }+2 P_{\max }}{3}
$$

(b) If speed is constant and load varies non-linearly (as a step function, a power function, a sine wave, or in some combination of these) over a certain limited period, and this non-linear variation is repeated in random fashion throughout its life, then:

$$
P=\left(\frac{\left(P_{1}\right)^{3.33}+\left(P_{2}\right)^{3.33}+\ldots+\left(P_{\mathrm{n}}\right)^{3.33}}{T_{1}+T_{2} \ldots . T_{N}}\right)^{0.3}
$$

Where $P_{1}, P_{2} \ldots P_{n}$ represent loads acting during selected time intervals $t_{1}, t_{2}, \ldots t_{n}$.
(c) If both speed and load vary, and each change in load is accompanied by a corresponding change in speed, then:

$$
P=\left(\left[\left(P_{1}\right)^{3.33} \times \frac{\mathrm{n}_{1}}{331 / 3} \times \frac{\mathrm{q}_{1}}{100}\right]+\left[\left(P_{2}\right)^{3.33} \times \frac{\mathrm{n}_{2}}{331 / 3} \times \frac{\mathrm{q}_{2}}{100}\right]+\ldots+\left[\left(P_{\mathrm{n}}\right)^{3.33} \times \frac{\mathrm{n}_{\mathrm{n}}}{331 / 3} \times \frac{\mathrm{q}_{\mathrm{n}}}{100}\right]\right)^{0.3}
$$

Where $P_{1}, P_{2} \ldots P_{n}$ represent loads acting at speeds $n_{1}, n_{2} \ldots n_{n}$; and $q_{1}, q_{2} \ldots q_{n}$ represent percentage of time that $P_{1}$ is acting at $n_{1}, P_{2}$ is acting at $n_{2} \ldots P_{n}$ is acting at $n_{n}$.

## LIFE - LOAD - CAPACITY - SPEED - RELATIONSHIP

## HIGH STEADY LOADS AND SHOCK LOADS

Bearing basic dynamic capacity and basic static capacity are determined through a consideration of entirely different factors. The prime consideration for dynamic capacity is the magnitude of the stressed volume of metal and the probability that it will endure a given number of loading cycles. For static capacity, the prime consideration is the influence of the elastic limit and rupture limit as manifested by the extent of the permanent deformations that occur. In view of the seemingly great difference in bases for consideration of dynamic and static capacities, it might be concluded that they bear no relation to one another. Such is not always the case when considering very high steady loads or shock loads present in a rotating bearing. The extent to which these loads approach (or exceed) the basic static capacity will determine the validity of the use of the life formula. More explicitly, when the following relationship exists, ordinary means may be used in determining bearing life.
$\frac{C_{o}}{f_{s} P_{o}} \geq \frac{C / P}{\left(\frac{n}{331 / 3}\right)^{0.30}}$
Where $\mathrm{C}_{\mathrm{O}}=$ Bearing basic static capacity-lbs
$\mathrm{P}_{\mathrm{o}}=$ Value of the radial load or maximum shock load-lbs
$f_{S}=$ Safety factor for high radial or shock loads (dependent on duration of peak load and type of bearing service demanded throughout life of bearing in given application)
$\mathrm{f}_{\mathrm{s}}=0.5$ for occasional high steady load but no shock
$\mathrm{f}_{\mathrm{s}}=1.0$ for continuous high steady load but no shock
$f_{s}=2.0$ for maximum shock loads and/or where very smooth subsequent bearing operation is required
$\mathrm{C}, \mathrm{P}=$ As previously defined
$\mathrm{n}=$ Rotational speed - rpm
A warning note on use of the above relation: even when the solution indicates that conventional means may be used in estimating bearing life, such a fatigue life forecast becomes invalid where less-than-optimum lubrication permits shock loads to induce fretting wear (false brinelling).

## MISALIGNMENT AND ROLLER CROWNING

ABMA Standards state, in effect, that optimum basic dynamic capacity $C$ values refer to roller bearing mountings so designed and executed that uniform load distribution over the active roller length is assured. It is further stated that, if misalignment is present, a reduction in the capacity value should be made before estimation of rating life.

There are two basic types of bearing misalignment which commonly occur, defined as: (a) location misalignment, and (b) deflection misalignment. A brief explanation of these two types will serve to determine which capacity reduction factor should be used when misalignment exists in a given application. Location misalignment implies misalignment in a plane at right angles to the direction of the load. The type is associated with a skewing of the rollers on the roller track with a resultant distortion of the contact area. Location misalignment may arise as a consequence of two bearing supports, often a great distance apart, being out of line. Though very undesirable, this type of misalignment is not as serious as deflection misalignment, and does not result in a large bearing capacity reduction.
Deflection misalignment implies misalignment in the same plane as the direction of the load. This type is associated with a tendency toward "digging-in" of the roller ends on the roller tracks, with resultant high stresses at these points. With straight, non-crowned, cylindrical rollers this condition is much more exaggerated than in designs incorporating crowned cylindrical rollers, as shown in the figure to the right. All standard radial roller bearings incorporate accurately ground crowned rollers carefully blended at the crown junctions.

Deflection misalignment is encountered when moderate to heavy external radial loads exist on small diameter shafts and/or bearing supports are remote from the point of load application. It may also be encountered due to inaccuracies in machining of the shaft or housing. (See Mounting Practice.)
ROLLWAY laboratory tests, together with field experience and investigations into the theory of stress concentration on bearings subjected to misalignment, have shown the effect on bearing life of the above two basic types of misalignment. Life reductions directly relate to the type and degree of misalignment as a result of the high stress concentrations over a reduced portion of the total roller length.


## LIFE - LOAD - CAPACITY - SPEED - RELATIONSHIP

## HIGH TEMPERATURE OPERATION

Bearing applications involving elevated temperatures preclude the use of standard bearing materials if full capacity is to be realized. In general, the temperature range is divided as follows:
a. $250^{\circ} \mathrm{F}$ to $400^{\circ} \mathrm{F}$
b. $400^{\circ} \mathrm{F}$ to $800^{\circ} \mathrm{F}$
c. Over $800^{\circ} \mathrm{F}$

Applications in range (a) can be adequately handled by alloy steels, such as SAE 52100 or carburized SAE 8620, suitably hardened and stabilized for the range of operating temperature. Little or no reduction in basic capacity should be expected. For range (b), high allow tool steels (M-50) are used with substantially reduced basic capacity. In addition, protective environments become imperative to reduce oxidation and deterioration of the elements. For range (c), materials such as ceramics are required, however, design experience in this range is limited.
Dimensional stability must be considered in high temperature operation; generally it is not possible to stabilize the material completely; thus, small dimensional changes must be expected in extended service.

Retainer material selection for elevated temperature service is critical; adequate strength, differential thermal expansion coefficients, and temperature gradients (both steady-state and transient modes) must be considered in each design. The foregoing is especially true when land-riding retainers are required.

## UNMOUNTED INTERNAL RADIAL CLEARANCE...

Unmounted internal radial clearance may be determined by two methods:
a. Dimensionally from the geometry of the bearing
b. By an inspection gaging procedure prescribed in the ABMA Standards handbook

Dimensionally, internal radial clearance is equal to the bore of the outer race minus the sum of the inner race OD and two roller diameters.

The gauging procedure specifies that one of the bearing races be fixed horizontally on a flat plate. A specified radial load is then applied to the unsupported race, alternately, in diametrically opposing directions. The internal radial clearance is the total displacement of the unsupported race.

The sole reason for manufacturing bearings with differing internal radial clearance is to give the designer a means to achieve predetermined clearance in the mounted revolving bearing. In determining this final running clearance it is necessary to take into consideration, in addition to the effects of shaft, housing interference fits and surface finish, the desire to meet one or more of the following conditions:
a. Optimum load distribution through the rollers to result in maximum life
b. Minimum bearing operating temperature
c. Minimum bearing torque
d. Minimum bearing noise level

The group classification of unmounted radial internal clearance should be specified only after a complete analysis of the resultant clearance of the mounted and operating bearing. The commonly available unmounted internal clearances of ROLLWAY bearings are shown in the tables on pages $74 \& 75$.

## RESULTANT INTERNAL RADIAL CLEARANCEWITH BEARING MOUNTED AND IN OPERATION

The resultant bearing internal radial clearance after mounting and with the bearing in operation will differ from the unmounted clearance due to:
a. The press fit between the shaft and inner race and/or a press fit between the housing and outer race, each resulting in an internal clearance reduction.
b. An increase in the temperature of the inner race over that of the outer race, which will result in a reduction of internal clearance. Conversely, an increase in temperature of the outer race over that of the inner race may result in increased internal clearance.

RADIAL BEARING UNMOUNTED INTERNAL CLEARANCE

The formula for the resultant internal clearance of the bearing after mounting and in operation is:
$\mathrm{S}_{\mathrm{r}}=\left[\mathrm{S}_{0}-\left(\mathrm{S}_{1} \pm \mathrm{S}_{2}-\mathrm{S}_{3} \pm \mathrm{S}_{\mathrm{x}}\right)\right] \geq 0$
Where:
$S_{r}=$ Resultant clearance - .0001 in.
$\mathrm{S}_{0}=$ Initial (unmounted) clearance
$S_{1}=$ Clearance reduction due to interference fits
$\mathrm{S}_{2}=$ Clearance reduction, or increase, due to race temperature differential
$\mathrm{S}_{3}=$ Clearance increase due to load
$S_{x}=$ Clearance reduction, or increase, due to high rotational speed or any other effects
Determination of terms $\mathrm{S}_{1}$ through $\mathrm{S}_{\mathrm{x}}$ is described in the following paragraphs.

## CLEARANCE REDUCTION DUE TO FIT

The clearance reduction due to fit is the sum of the effective inner race expansion, a, and the effective outer race contraction, b, under given press fit conditions (Shaft and Housing Fits).

$$
S_{1}=a+b \quad\left(.0001^{\prime \prime}\right)
$$

Where $\mathrm{a} \& \mathrm{~b}$ are as follows:
$a=$ expansion of the inner race is estimated; (interference fit) X . 75
$b=$ contraction of the outer race is estimated; (interference fit) $X .85$
And assumes the application has
a. solid shaft
b. rigid housing

In the case of a hollow shaft, and/or flexible housing, ROLLWAY Engineering should be consulted for resultant fits.

## CHANGE IN CLEARANCE DUE TO OTHER EFFECTS

Operating conditions normally will not be so unusual that other clearance effects $\left(S_{x}\right)$ must be considered. However, unusual cases do occur. It is suggested that the ROLLWAY Engineering Department be consulted when conditions may exist which warrant consideration of clearance changes $\left(\mathrm{S}_{\mathrm{x}}\right)$ that are not covered by terms $\mathrm{S}_{1}, \mathrm{~S}_{2}$, and $\mathrm{S}_{3}$.

## Clearance Codes Used On Bearings With Tru-Rol \& Max Numbering Systems

| Bearing Bore Dia. (Millimeter) |  | 003 |  | 005 |  | 006 - Standard |  | 007 |  | 009 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Over | Up to \& include |  |  |  |  |  |  |  |  |  |  |
| 0 | 15 | 0.0003 | 0.0011 | 0.0009 | 0.0017 | 0.0010 | 0.0018 | 0.0011 | 0.0019 | - | - |
| 16 | 17 | 0.0004 | 0.0012 | 0.0009 | 0.0017 | 0.0010 | 0.0018 | 0.0012 | 0.0020 | - | - |
| 18 | 20 | 0.0005 | 0.0013 | 0.0010 | 0.0018 | 0.0012 | 0.0020 | 0.0014 | 0.0022 | - | - |
| 21 | 25 | 0.0005 | 0.0015 | 0.0011 | 0.0021 | 0.0013 | 0.0023 | 0.0015 | 0.0025 | 0.0024 | 0.0034 |
| 26 | 30 | 0.0006 | 0.0016 | 0.0013 | 0.0023 | 0.0015 | 0.0025 | 0.0017 | 0.0027 | 0.0027 | 0.0037 |
| 31 | 35 | 0.0007 | 0.0017 | 0.0015 | 0.0025 | 0.0017 | 0.0027 | 0.0019 | 0.0029 | 0.0030 | 0.0040 |
| 36 | 40 | 0.0008 | 0.0018 | 0.0016 | 0.0026 | 0.0018 | 0.0028 | 0.0020 | 0.0030 | 0.0032 | 0.0042 |
| 41 | 45 | 0.0008 | 0.0020 | 0.0017 | 0.0029 | 0.0020 | 0.0032 | 0.0022 | 0.0034 | 0.0036 | 0.0048 |
| 46 | 50 | 0.0009 | 0.0021 | 0.0017 | 0.0029 | 0.0020 | 0.0032 | 0.0023 | 0.0035 | 0.0036 | 0.0048 |
| 51 | 55 | 0.0010 | 0.0022 | 0.0019 | 0.0031 | 0.0022 | 0.0034 | 0.0025 | 0.0037 | 0.0039 | 0.0051 |
| 56 | 60 | 0.0011 | 0.0023 | 0.0022 | 0.0034 | 0.0025 | 0.0037 | 0.0028 | 0.0040 | 0.0044 | 0.0056 |
| 61 | 64 | 0.0012 | 0.0024 | 0.0023 | 0.0035 | 0.0025 | 0.0037 | 0.0029 | 0.0041 | 0.0046 | 0.0058 |
| 65 | 70 | 0.0012 | 0.0026 | 0.0024 | 0.0038 | 0.0027 | 0.0041 | 0.0030 | 0.0044 | 0.0048 | 0.0062 |
| 71 | 75 | 0.0013 | 0.0027 | 0.0026 | 0.0040 | 0.0030 | 0.0044 | 0.0033 | 0.0047 | 0.0052 | 0.0066 |
| 76 | 80 | 0.0014 | 0.0028 | 0.0026 | 0.0040 | 0.0030 | 0.0044 | 0.0034 | 0.0048 | 0.0052 | 0.0066 |
| 81 | 85 | 0.0014 | 0.0030 | 0.0028 | 0.0044 | 0.0032 | 0.0048 | 0.0036 | 0.0052 | 0.0056 | 0.0072 |
| 86 | 90 | 0.0014 | 0.0030 | 0.0028 | 0.0044 | 0.0032 | 0.0048 | 0.0036 | 0.0052 | 0.0056 | 0.0072 |
| 91 | 95 | 0.0016 | 0.0032 | 0.0030 | 0.0046 | 0.0034 | 0.0050 | 0.0038 | 0.0054 | 0.0059 | 0.0075 |
| 96 | 100 | 0.0016 | 0.0032 | 0.0031 | 0.0047 | 0.0035 | 0.0051 | 0.0039 | 0.0055 | 0.0061 | 0.0077 |
| 101 | 105 | 0.0017 | 0.0035 | 0.0032 | 0.0050 | 0.0037 | 0.0055 | 0.0041 | 0.0059 | 0.0064 | 0.0082 |
| 106 | 110 | 0.0017 | 0.0035 | 0.0033 | 0.0051 | 0.0038 | 0.0056 | 0.0043 | 0.0061 | 0.0066 | 0.0084 |
| 111 | 120 | 0.0019 | 0.0037 | 0.0036 | 0.0054 | 0.0041 | 0.0059 | 0.0046 | 0.0064 | 0.0071 | 0.0089 |
| 121 | 130 | 0.0020 | 0.0040 | 0.0039 | 0.0059 | 0.0044 | 0.0064 | 0.0049 | 0.0069 | 0.0076 | 0.0096 |
| 131 | 140 | 0.0022 | 0.0042 | 0.0042 | 0.0062 | 0.0048 | 0.0068 | 0.0054 | 0.0074 | 0.0083 | 0.0103 |
| 141 | 150 | 0.0023 | 0.0045 | 0.0045 | 0.0067 | 0.0051 | 0.0073 | 0.0057 | 0.0079 | 0.0088 | 0.0110 |
| 151 | 160 | 0.0025 | 0.0047 | 0.0048 | 0.0070 | 0.0054 | 0.0076 | 0.0060 | 0.0082 | 0.0093 | 0.0115 |
| 161 | 170 | 0.0027 | 0.0049 | 0.0050 | 0.0072 | 0.0057 | 0.0079 | 0.0064 | 0.0086 | 0.0097 | 0.0119 |
| 171 | 180 | 0.0028 | 0.0052 | 0.0053 | 0.0077 | 0.0060 | 0.0084 | 0.0067 | 0.0091 | 0.0130 | 0.0127 |
| 181 | 190 | 0.0030 | 0.0054 | 0.0056 | 0.0080 | 0.0063 | 0.0087 | 0.0072 | 0.0096 | 0.0110 | 0.0134 |
| 191 | 200 | 0.0032 | 0.0058 | 0.0059 | 0.0085 | 0.0067 | 0.0093 | 0.0075 | 0.0101 | 0.0115 | 0.0141 |
| 201 | 220 | 0.0035 | 0.0061 | 0.0063 | 0.0089 | 0.0072 | 0.0098 | 0.0080 | 0.0106 | - | - |
| 221 | 240 | 0.0038 | 0.0066 | 0.0070 | 0.0098 | 0.0078 | 0.0106 | 0.0087 | 0.0115 | - | - |
| 241 | 260 | 0.0042 | 0.0070 | 0.0076 | 0.0104 | 0.0085 | 0.0113 | 0.0096 | 0.0124 | - | - |
| 261 | 280 | 0.0045 | 0.0075 | 0.0080 | 0.0110 | 0.0090 | 0.0120 | 0.0101 | 0.0131 | - | - |
| 281 | 300 | 0.0049 | 0.0079 | 0.0085 | 0.0115 | 0.0097 | 0.0127 | 0.0109 | 0.0139 | - | - |
| 301 | 320 | 0.0053 | 0.0083 | 0.0093 | 0.0123 | 0.0105 | 0.0135 | 0.0117 | 0.0147 | - | - |

ROLLWAL ENGINEERING SECTION

## RADIAL BEARING UNMOUNTED INTERNAL CLEARANCE

## Clearance Codes <br> Used On Bearings With ISO Numbering Systems

| Bearing Bore Dia. (Millimeter) |  | C2 |  | CO |  | C3 |  | C4 |  | C5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Over | Up to \& include |  |  |  |  |  |  |  |  |  |  |
| 0 | 10 | 0.0000 | 0.0012 | 0.0004 | 0.0016 | 0.0010 | 0.0022 | 0.0014 | 0.0026 | 0.0022 | 0.0033 |
| 11 | 18 | 0.0000 | 0.0012 | 0.0004 | 0.0016 | 0.0010 | 0.0022 | 0.0014 | 0.0026 | 0.0022 | 0.0033 |
| 19 | 24 | 0.0000 | 0.0012 | 0.0004 | 0.0016 | 0.0010 | 0.0022 | 0.0014 | 0.0026 | 0.0022 | 0.0033 |
| 25 | 30 | 0.0000 | 0.0012 | 0.0040 | 0.0018 | 0.0012 | 0.0026 | 0.0016 | 0.0028 | 0.0024 | 0.0037 |
| 31 | 40 | 0.0000 | 0.0014 | 0.0060 | 0.0020 | 0.0014 | 0.0028 | 0.0018 | 0.0032 | 0.0028 | 0.0041 |
| 41 | 50 | 0.0002 | 0.0016 | 0.0080 | 0.0022 | 0.0016 | 0.0030 | 0.0022 | 0.0035 | 0.0033 | 0.0047 |
| 51 | 65 | 0.0002 | 0.0018 | 0.0080 | 0.0026 | 0.0018 | 0.0035 | 0.0026 | 0.0041 | 0.0039 | 0.0055 |
| 66 | 80 | 0.0002 | 0.0022 | 0.0010 | 0.0030 | 0.0022 | 0.0041 | 0.0030 | 0.0049 | 0.0045 | 0.0065 |
| 81 | 100 | 0.0004 | 0.0024 | 0.0012 | 0.0032 | 0.0026 | 0.0045 | 0.0035 | 0.0055 | 0.0057 | 0.0077 |
| 101 | 120 | 0.0004 | 0.0026 | 0.0014 | 0.0035 | 0.0032 | 0.0053 | 0.0041 | 0.0063 | 0.0065 | 0.0087 |
| 121 | 140 | 0.0004 | 0.0030 | 0.0016 | 0.0041 | 0.0035 | 0.0061 | 0.0045 | 0.0071 | 0.0073 | 0.0098 |
| 141 | 160 | 0.0006 | 0.0032 | 0.0020 | 0.0045 | 0.0039 | 0.0065 | 0.0051 | 0.0077 | 0.0083 | 0.0108 |
| 161 | 180 | 0.0008 | 0.0034 | 0.0024 | 0.0049 | 0.0043 | 0.0069 | 0.0059 | 0.0085 | 0.0093 | 0.0118 |
| 181 | 200 | 0.0010 | 0.0037 | 0.0026 | 0.0053 | 0.0049 | 0.0077 | 0.0065 | 0.0092 | 0.0102 | 0.0123 |
| 201 | 225 | 0.0012 | 0.0041 | 0.0030 | 0.0059 | 0.0055 | 0.0085 | 0.0071 | 0.0100 | 0.0014 | 0.0144 |
| 226 | 250 | 0.0016 | 0.0045 | 0.0035 | 0.0065 | 0.0061 | 0.0090 | 0.0081 | 0.0110 | 0.0126 | 0.0156 |
| 251 | 280 | 0.0018 | 0.0049 | 0.0039 | 0.0071 | 0.0069 | 0.0100 | 0.0090 | 0.0122 | 0.0140 | 0.0171 |
| 281 | 315 | 0.0020 | 0.0052 | 0.0043 | 0.0077 | 0.0077 | 0.0110 | 0.0100 | 0.0134 | 0.0157 | 0.0191 |
| 316 | 355 | 0.0022 | 0.0057 | 0.0049 | 0.0085 | 0.0085 | 0.0120 | 0.0110 | 0.0146 | 0.0173 | 0.0209 |
| 356 | 400 | 0.0026 | 0.0063 | 0.0055 | 0.0093 | 0.0096 | 0.0134 | 0.0126 | 0.0163 | 0.0197 | 0.0234 |
| 401 | 450 | 0.0028 | 0.0075 | 0.0061 | 0.0108 | 0.0106 | 0.0153 | 0.0140 | 0.0179 | 0.0219 | 0.0266 |
| 451 | 500 | 0.0033 | 0.0081 | 0.0071 | 0.0118 | 0.0118 | 0.0165 | 0.0155 | 0.0202 | 0.0244 | 0.0291 |

ROLLWAL ENGINEERING SECTION

## RADIAL BEARING MOUNTING PRACTICE - SHAFT AND HOUSING FITS

Radial Bearing Mounting Practice GENERAL MOUNTING PRECAUTIONS...

Mounting the bearing has important effects on performance, durability, and reliability. Proper tools, fixtures, and techniques are a must for roller bearing applications, and it is the responsibility of the design engineer to provide for this in his design, advisory notes, mounting instructions, and service manuals. Nicks, dents, scores, scratches, corrosion staining, and dirt must be avoided if reliability, long life, and smooth running are to be expected of roller bearings.

## BEARING FITS...

The slipping or creeping of a bearing race on a rotating shaft or in a rotating housing, occurs when the fit is loose. Such slipping or creeping action can result in rapid wear of both the shaft and bearing races when the surfaces are dry and heavily loaded. To prevent this, the bearing is customarily mounted with a press fit on the rotating race and a push fit on the stationary race with the tightness or looseness dependent upon the service intended. Where shock or vibratory loads are to be encountered, fits should be made tighter than for ordinary service.

The assembly of a bearing on a shaft is best done by expanding the inner race by heating. This should be done in clean oil or in a temperature-controlled furnace at a temperature of between $200^{\circ} \mathrm{F}$ and $250^{\circ} \mathrm{F}$ as overheating will reduce the hardness of the races.

## MOUNTING FOR PRECISION AND QUIET RUNNING APPLICATIONS...

In applications of roller bearings where smoothness of operation is important, special precautions must be taken to eliminate those conditions which serve to initiate radial and axial motions. Accompanying these motions are forces that can excite bearing system excursions in resonance with shaft or housing components over a range of frequencies from well below shaft speed to as much as 100 times above it. The more sensitive the configuration, the greater the need for precision in the bearing and mounting. Among the important elements to be controlled are shaft, race, and housing roundness, squareness of faces, diameters, and shoulders. Though not readily appreciated, grinding chatter, lobular out-of-roundness, waviness, and any localized deviation from an average or mean diameter (even as a consequence of flat spots as small as .0005 in .) can cause significant operating roughness.

To detect the affore mentioned deviciencies and ensure the selection of good components, three-point electronic indicator inspection must be made. For ultra-precise or quiet applications, components are often checked on a continuous recording instrument capable of measuring to within a few millionths of an inch. Though this may seem extreme, it has been found that shaft deformities will be reflected through the bearings inner races. Similarly, tight-fit outer races pick up significant deviations in housings. Special attention is required both in housing design and in assembly of the bearing to shaft and housing. Housing response to axial excursions forced by bearing wobble resulting from out-of-square mounting has been found to be a major source of noise and howl in rotating equipment. Stiffer housings and careful alignment of bearing races make significant improvements in applications where noise or vibrations have been found to be objectionable.

## SQUARENESS AND ALIGNMENT...

In addition to the limits for roundness, squareness of end faces and shoulders must be closely controlled. Tolerances of .0001 in . full indicator reading per inch of diameter are normally required for shoulders, in addition to appropriately selected limits for fillet eccentricities. The latter must also fall within specified limits for radii tolerances to prevent interference with bearing race fillets, which results in cocking of the race. Reference should be made to the bearing dimension tables in Section 4, which list the corner radius for each bearing. Shoulders must also be of sufficient height to ensure proper support for the races.

## SOFT METAL AND RESILIENT HOUSINGS...

In applications where bearing housings are made of soft materials (aluminum, magnesium, light sheet metal, etc.) or those which lose their fit because of different thermal expansion, outer race mounting must be approached cautiously. First, determine the possible consequences of race loosening and turning. The type of loading must also be considered to determine its effect on race loosening. The force exerted by the rotating elements on the outer race can initiate a precession which will aggravate the race loosening problem through wear, pounding, and abrasion.

Since the pressing force is usually greater than the friction forces in effect between the outer race and housing, no foolproof method can be recommended for securing outer races in housings which deform significantly under load or after appreciable service wear. The surest solution is to press the race into a housing of sufficient stiffness with the heaviest fit consistent with the bearing operating clearances. Often, inserts or liners of cast iron or steel are used to maintain the desired fit and increase useful life of both bearing and housing.

ROLLWAS
RADIAL BEARING MOUNTING PRACTICE - SHAFT AND HOUSING FITS

## SHAFT FITS

Inner Race Stationary, Outer Race Rotate

| DESCRIPTION | EXAMPLE | BORE SIZE | FIT CODE |
| :--- | :--- | :---: | :---: |
| Inner race must be easily displaced | wheel | all | g6 |
| Inner race need not be displaced | pulley, sheaves | all | h 6 |

Inner Race Rotates, Outer Race Stationary

| DESCRIPTION | EXAMPLE | BORE SIZE | FIT CODE |
| :--- | :--- | :---: | :---: |
| Light and variable loads <br> (up to 7\% of dynamic) | machine tools | $<40$ | pu |
|  | pumps | $40-140$ | k6 |
|  |  | $140-200$ | m6 |
| Normal to heavy loads | electric motors | $<40$ | k5 |
|  | pumps | $40-100$ | m5 |
|  | gearboxes | $100-140$ | m6 |
|  | transmissions | $140-200$ | n6 |
|  |  | $200-400$ | p6 |
|  |  | $400-660$ | r6 |
| Very heavy loads or shock loads | traction motors | $50-140$ | n6 |
|  | shaker screens | $140-400$ | p6 |
|  |  | $400-660$ | r6 |

## HOUSING FITS

Inner Race Stationary, Outer Race Rotate

| DESCRIPTION | EXAMPLE | BORE SIZE | FIT CODE |
| :--- | :--- | :---: | :---: |
| Heavy loads and thin walled housing | support wheel | all | P7 |
| Normal and heavy loads | pulley, sheaves | all | N7 |
| Light and variable loads | conveyor roller | all | M7 |

Direction of Load Indeterminate

| DESCRIPTION | EXAMPLE | BORE SIZE | FIT CODE |
| :--- | :--- | :---: | :---: |
| Heavy shock loads | traction motors <br> shaker screens | all | M7 |
| Heavy and normal loads | electric motors <br> pumps | all | K7 |
| Normal and light loads | same as above | all | J7 |

## Outer Race Stationary

| DESCRIPTION | EXAMPLE | BORE SIZE | FIT CODE |
| :--- | :--- | :---: | :---: |
| Very heavy loads or shock loads | rail vehicles | all | J7 |
| All loads | general applications | all | H7 |
| Normal and light loads | line shafting | all | G7 |
| Heat supplied through shaft | dryer cylinders | all | G7 |
| High degree of accuracy | spindle | $>250$ | P6 |
|  |  | $125-250$ | N6 |
|  |  | $<125$ | M6 |

## Standard Shaft Fits <br> Resultant Fit By Fit Code And Bearing Bore Diameter (Inches)

| BORE mm |  | g 6 | h 6 | j 5 | j 6 | k 5 | k 6 | m 5 | m 6 | n 6 | p 6 | r 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 30 | -0.0004 | -0.0001 | 0.0002 | 0.0003 | 0.0005 | 0.0006 | - | - | - | - | - |
| 31 | 50 | -0.0005 | -0.0001 | 0.0003 | 0.0004 | 0.0006 | 0.0007 | 0.0009 | - | - | - | - |
| 51 | 80 | -0.0005 | -0.0001 | 0.0003 | 0.0004 | 0.0007 | 0.0008 | 0.0010 | 0.0011 | 0.0015 | - | - |
| 81 | 120 | -0.0005 | -0.0001 | 0.0003 | 0.0005 | 0.0008 | 0.0010 | 0.0012 | 0.0014 | 0.0018 | 0.0023 | - |
| 121 | 180 | -0.0006 | 0.0000 | 0.0005 | 0.0006 | 0.0010 | 0.0011 | 0.0015 | 0.0016 | 0.0021 | 0.0027 | - |
| 181 | 240 | -0.0006 | 0.0000 | 0.0005 | 0.0007 | 0.0012 | 0.0014 | 0.0017 | 0.0019 | 0.0024 | 0.0032 | - |
| 241 | 300 | -0.0006 | 0.0000 | 0.0005 | 0.0007 | 0.0014 | 0.0015 | 0.0020 | 0.0021 | 0.0027 | 0.0036 | - |
| 301 | 320 | -0.0006 | 0.0000 | 0.0005 | 0.0008 | 0.0015 | 0.0017 | 0.0021 | 0.0023 | 0.0030 | 0.0040 | - |
| 321 | 400 | -0.0006 | 0.0001 | 0.0006 | 0.0008 | 0.0015 | 0.0017 | 0.0021 | 0.0023 | 0.0031 | 0.0040 | - |
| 401 | 500 | -0.0007 | 0.0001 | 0.0007 | 0.0010 | 0.0016 | 0.0019 | 0.0023 | 0.0026 | 0.0035 | 0.0045 | 0.0067 |
| 501 | 622 | -0.0008 | 0.0002 | 0.0007 | 0.0011 | 0.0018 | 0.0021 | 0.0026 | 0.0029 | 0.0036 | 0.0048 | 0.0076 |
| 623 | 660 | -0.0014 | 0.0006 | 0.0013 | 0.0015 | 0.0024 | 0.0026 | 0.0033 | 0.0036 | 0.0044 | 0.0057 | 0.0079 |

## Standard Housing Fits Resultant Fit By Fit Code And Bearing Outside Diameter (Inches)

| OD mm |  | G7 | H6 | H7 | J7 | K7 | M6 | M7 | N6 | N7 | P6 | P7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 47 | 0.0011 | 0.0006 | 0.0007 | 0.0003 | 0.0000 | -0.0003 | -0.0003 | -0.0006 | -0.0006 | -0.0010 | -0.0010 |
| 48 | 80 | 0.0013 | 0.0006 | 0.0009 | 0.0004 | 0.0000 | -0.0003 | -0.0003 | -0.0007 | -0.0007 | -0.0012 | -0.0012 |
| 81 | 120 | 0.0015 | 0.0008 | 0.0010 | 0.0005 | 0.0000 | -0.0003 | -0.0004 | -0.0008 | -0.0008 | -0.0013 | -0.0013 |
| 121 | 150 | 0.0017 | 0.0009 | 0.0012 | 0.0006 | 0.0001 | -0.0004 | -0.0004 | -0.0009 | -0.0009 | -0.0016 | -0.0016 |
| 151 | 180 | 0.0019 | 0.0010 | 0.0013 | 0.0007 | 0.0002 | -0.0003 | -0.0003 | -0.0008 | -0.0008 | -0.0014 | -0.0014 |
| 181 | 250 | 0.0021 | 0.0012 | 0.0015 | 0.0009 | 0.0002 | -0.0003 | -0.0003 | -0.0009 | -0.0009 | -0.0016 | -0.0016 |
| 251 | 310 | 0.0024 | 0.0013 | 0.0017 | 0.0011 | 0.0003 | -0.0003 | -0.0003 | -0.0009 | -0.0009 | -0.0018 | -0.0018 |
| 311 | 400 | 0.0027 | 0.0015 | 0.0019 | 0.0012 | 0.0004 | -0.0003 | -0.0003 | -0.0009 | -0.0009 | -0.0019 | -0.0019 |
| 401 | 500 | 0.0030 | 0.0017 | 0.0022 | 0.0014 | 0.0004 | -0.0003 | -0.0004 | -0.0010 | -0.0010 | -0.0021 | -0.0021 |
| 501 | 622 | 0.0033 | 0.0019 | 0.0024 | 0.0015 | 0.0005 | -0.0004 | -0.0004 | -0.0011 | -0.0011 | -0.0023 | -0.0023 |
| 623 | 787 | 0.0040 | 0.0025 | 0.0030 | 0.0021 | 0.0010 | 0.0000 | 0.0000 | -0.0008 | -0.0008 | -0.0022 | -0.0022 |
| 788 | 960 | 0.0047 | 0.0030 | 0.0037 | 0.0027 | 0.0014 | 0.0003 | 0.0004 | -0.0006 | -0.0006 | -0.0020 | -0.0020 |

## SHAFT AND HOUSING DESIGN CONSIDERATIONS

For proper bearing operation, four basic considerations should be given to the design of shafts and housings. The shaft and housing should be designed to:

1. Prevent rotation of the race which is rotating relative to the load and prevent rotational creep in the stationary race.
2. Axially retain separable bearing races.
3. Incorporate means of transmitting thrust loads from the shaft to the housing.
4. Facilitate ease of mounting and removal.


ROLLWAU

## THRUST BEARING MOUNTING PRACTICE - SHAFT AND HOUSING FITS

## Thrust Bearing Mounting Practice

When considering mounting and installation data there are three major areas of concern: shaft and housing fits, shaft and housing shoulders and shaft and housing tolerancing.

## SHAFT AND HOUSING FITS...

The shaft and housing sizes and size tolerances are specified in the thrust bearing section, Pages 80 and 81 .
There exists the possibility of a slight press fit due to the acceptable tolerances of the bearing bore and outside diameters. Under no circumstances should a press fit exceeding the limits shown be used with these plates, as any expansion or contraction in the plates due to fit could result in a misalignment in the plates and subsequent shorter bearing life.

## SHAFT AND HOUSING CLEARANCES...

The tapered thrust bearing (TTHD style) plates are manufactured with the same ID and OD on both plates. Applications for these bearings must be designed with ample clearance between the OD of the shaft plate and the housing and between the ID of the housing plate and the shaft. Typically .030 inch is provided.


## PLATE BACKING AND SHAFT SHOULDERS...

As a general rule the minimum shaft shoulder and maximum housing shoulder should be as follows:

- Shaft shoulder - at a minimum equal to the outside diameter of the shaft plate.
- Housing shoulder - maximum diameter must not exceed the inside diameter of the housing plate.
- For Tapered Thrust Bearings ROLLWAY Engineering must be consulted for shaft and housing shoulders.
- ROLLWAY Engineering must be consulted for shaft and housing shoulders that exceed the above rule.


## TOLERANCING...

The shaft and housing squareness should be as follows:

- Equal to 0.0005 inch per inch of diameter. Example: 4 " dia shaft should be square to the shaft shoulder within (4 X 0.0005) 0.002 inches

ROLLWAL ENGINEERING SECTION
THRUST BEARING MOUNTING PRACTICE - SHAFT AND HOUSING FITS

CYLINDRICALTHRUST

|  | Bearing <br> Bore Diameter | Shaft Diameter Deviation <br> from Bore Diameter ( - ) |  |
| :---: | :---: | :---: | :---: |
| over | incl | high |  |
| 0.0000 | 1.1250 | 0.0005 | 0.0015 |
| 1.1250 | 1.3125 | 0.0006 |  |
| 1.3125 | 1.5000 | 0.0007 |  |
| 1.5000 | 1.6875 | 0.0008 |  |
| 1.6875 | 1.8750 | 0.0009 | 0.0016 |
| 1.8750 | 2.1250 | 0.0010 | 0.0017 |
| 2.1250 | 2.5000 | 0.0011 | 0.0019 |
| 2.5000 | 3.0000 | 0.0012 | 0.0020 |
| 3.0000 | 3.5000 | 0.0013 | 0.0021 |
| 3.5000 | 7.0000 | 0.0015 | 0.0022 |
| 7.0000 | 9.0000 | 0.0015 | 0.0023 |
| 9.000 | 12.0000 | 0.0018 | 0.0025 |
| 12.0000 | 15.0000 | 0.0020 | 0.0030 |
| 15.0000 | 19.0000 | 0.0020 | 0.0033 |
| 19.0000 | 23.0000 | 0.0025 | 0.0035 |
| 23.0000 | 30.0000 | 0.0030 | 0.0040 |


|  | Bearing <br> Outside Diameter | Housing Diameter Deviation <br> from Outside Diameter (+) |  |
| :---: | :---: | :---: | :---: |
| over | incl | high |  |
| 2.0000 | 2.3750 | 0.0015 |  |
| 2.3750 | 3.2500 | 0.0017 |  |
| 3.2500 | 3.6875 | 0.0019 |  |
| 3.6875 | 4.0000 | 0.0021 |  |
| 4.0000 | 4.5312 | 0.0028 |  |
| 4.5312 | 10.0000 | 0.0030 | 0.0007 |
| 10.0000 | 18.0000 | 0.0040 | 0.0009 |
| 18.0000 | 22.0000 | 0.0050 | 0.0011 |
| 22.0000 | 26.0000 | 0.0055 | 0.0015 |
| 26.0000 | 28.0000 | 0.0060 | 0.0020 |
| 28.0000 | 34.0000 | 0.0070 | 0.0025 |
| 34.0000 | 38.0000 | 0.0080 | 0.0025 |
| 38.0000 | 44.0000 | 0.0090 | 0.0030 |

TAPERED THRUST

|  | Bearing <br> Bore Diameter | Spring Loaded <br> Shaft Diameter Deviation <br> from Bore Diameter ( - ) |  |
| :---: | :---: | :---: | :---: |
| over | incl | high |  |
| 0.0000 | 6.8750 | 0.0000 | 0.0010 |
| 6.8750 | 7.9999 | 0.0000 | 0.0010 |
| 7.9999 | 12.0000 | 0.0000 | 0.0015 |
| 12.0000 | 24.0000 | 0.0000 | 0.0020 |
| 24.0000 | 36.0000 | 0.0000 | 0.0025 |
| 36.0000 | 48.0000 | 0.0000 | 0.0030 |


| Outside Diameter | Bearing <br> Housing Diameter Deviation <br> from Outside Diameter (+) |  |
| :---: | :---: | :---: |
| over | incl | high |
| 0.0000 | 10.5000 | 0.0025 |
| 10.5000 | 13.0000 | 0.003 |
| 13.0000 | 20.0000 | 0.004 |
| 20.0000 | 25.0000 | 0.0045 |
| 25.0000 | 30.0000 | 0.006 |
| 30.0000 | 35.0000 | 0.007 |

CRANE HOOK

| Bearing |  | Hook Shank | Housing Diameter |
| :---: | :---: | :---: | :---: |
| CT-11 | WCT-11 | $15 / 8$ |  |
| CT-16 | WCT-16 | 1 15/16 |  |
| CT-17 | WCT-17 | 2 |  |
| CT-19 | WCT-19 | $21 / 4$ |  |
| CT-20C | WCT-20C | $21 / 4$ |  |
| CT-20-B | WCT-20-B | 2 5/16 |  |
| CT-23 | WCT-23 | $23 / 4$ |  |
| CT-24-A | WCT-24-A | $23 / 4$ |  |
| CT-27-A | WCT-27-A | $31 / 4$ |  |
| CT-27-C | WCT-27-C | $31 / 4$ |  |
| CT-27-B | WCT-27-B | $31 / 2$ | None specified |
| CT-28-A | WCT-28-A | $31 / 2$ |  |
| CT-34-A | WCT-34-A | 3 3/4 |  |
| CT-35-A | WCT-35-A | $41 / 4$ |  |
| CT-38-A | WCT-38-A | $41 / 2$ |  |
| CT-39-A | WCT-39-A | 5 |  |
| CT-44-A | WCT-44-A | $51 / 2$ |  |
| CT-45-A | WCT-45-A | 6 |  |
| CT-49-A | WCT-49-A | 6 13/16 |  |
| CT-54 | WCT-54 | 9 5/16 |  |
| CT-756-201 | WCT-756 | 10 |  |

ROLLWAL ENGINEERING SECTION

## JOURNAL BEARING - SHAFT AND HOUSING FITS

## Standard Metric Journal Roller Bearings Shaft And Housing Fits

| Shaft Dimensions |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Bearing Bore | Shaft Diameter - inches | Resultant Fit |  |  |
| Nominal - mm | Max | Min | Tight | Tight |
| 25 | 0.9850 | 0.9845 | 0.0002 | 0.0011 |
| 30 | 1.1819 | 1.1814 | 0.0003 | 0.0012 |
| 35 | 1.3788 | 1.3783 | 0.0003 | 0.0013 |
| 40 | 1.5758 | 1.5752 | 0.0004 | 0.0015 |
| 45 | 1.7728 | 1.7722 | 0.0005 | 0.0016 |
| 50 | 1.9697 | 1.9691 | 0.0006 | 0.0017 |
| 55 | 2.1666 | 2.1660 | 0.0006 | 0.0018 |
| 60 | 2.3635 | 2.3628 | 0.0006 | 0.0019 |
| 65 | 2.5605 | 2.5598 | 0.0007 | 0.0020 |
| 70 | 2.7574 | 2.7566 | 0.0007 | 0.0021 |
| 75 | 2.9544 | 2.9536 | 0.0008 | 0.0022 |
| 80 | 3.1512 | 3.1504 | 0.0008 | 0.0022 |
| 85 | 3.3482 | 3.3474 | 0.0009 | 0.0025 |
| 90 | 3.5450 | 3.5442 | 0.0009 | 0.0025 |
| 95 | 3.7420 | 3.7412 | 0.0010 | 0.0026 |
| 100 | 3.9389 | 3.9380 | 0.0010 | 0.0027 |
| 110 | 4.3328 | 4.3318 | 0.0011 | 0.0029 |
| 120 | 4.7266 | 4.7256 | 0.0012 | 0.0030 |
| 130 | 5.1204 | 5.1194 | 0.0013 | 0.0033 |
| 140 | 5.5142 | 5.5131 | 0.0013 | 0.0034 |
| 150 | 5.9080 | 5.9069 | 0.0014 | 0.0035 |
| 160 | 6.3019 | 6.3007 | 0.0015 | 0.0037 |
| 170 | 6.6957 | 6.6944 | 0.0015 | 0.0038 |
| 180 | 7.0895 | 7.0882 | 0.0016 | 0.0039 |
| 200 | 7.8770 | 7.8757 | 0.0017 | 0.0042 |
| 220 | 8.6644 | 8.6631 | 0.0017 | 0.0042 |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |


| Housing Dimensions |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Bearing OD. | Housing Bore - Inches |  | Resultant Fit |  |
| Nominal - mm | Max | Min | Tight | Tight |
| 62 | 2.4419 | 2.4409 | 0.0010 | 0.0005 |
| 72 | 2.8357 | 2.8346 | 0.0011 | 0.0005 |
| 80 | 3.1508 | 3.1496 | 0.0012 | 0.0005 |
| 85 | 3.3478 | 3.3465 | 0.0013 | 0.0006 |
| 90 | 3.5446 | 3.5432 | 0.0013 | 0.0007 |
| 100 | 3.9384 | 3.9369 | 0.0014 | 0.0007 |
| 110 | 4.3322 | 4.3306 | 0.0015 | 0.0007 |
| 120 | 4.7260 | 4.7243 | 0.0016 | 0.0007 |
| 125 | 4.9229 | 4.9212 | 0.0016 | 0.0009 |
| 130 | 5.1197 | 5.1179 | 0.0016 | 0.0010 |
| 140 | 5.5135 | 5.5116 | 0.0017 | 0.0010 |
| 150 | 5.9073 | 5.9053 | 0.0018 | 0.0010 |
| 160 | 6.3011 | 6.2990 | 0.0019 | 0.0012 |
| 170 | 6.6948 | 6.6926 | 0.0019 | 0.0013 |
| 180 | 7.0886 | 7.0863 | 0.0020 | 0.0013 |
| 190 | 7.4824 | 7.4800 | 0.0021 | 0.0015 |
| 200 | 7.8762 | 7.8737 | 0.0022 | 0.0015 |
| 215 | 8.4669 | 8.4643 | 0.0023 | 0.0015 |
| 225 | 8.8606 | 8.8580 | 0.0023 | 0.0015 |
| 230 | 9.0574 | 9.0547 | 0.0023 | 0.0016 |
| 240 | 9.4512 | 9.4484 | 0.0024 | 0.0016 |
| 250 | 9.8450 | 9.8421 | 0.0025 | 0.0016 |
| 260 | 10.2388 | 10.2358 | 0.0026 | 0.0018 |
| 270 | 10.6326 | 10.6295 | 0.0027 | 0.0018 |
| 280 | 11.0263 | 11.0231 | 0.0027 | 0.0019 |
| 290 | 11.4201 | 11.4168 | 0.0028 | 0.0019 |
| 300 | 11.8138 | 11.8105 | 0.0028 | 0.0019 |
| 310 | 12.2076 | 12.2042 | 0.0029 | 0.0019 |
| 320 | 12.6013 | 12.5978 | 0.0029 | 0.0022 |
| 340 | 13.3888 | 13.3852 | 0.0030 | 0.0022 |
| 380 | 14.9637 | 14.9599 | 0.0031 | 0.0023 |
|  |  |  |  |  |

## LUBRICATION

Proper lubrication is essential to achieving desired bearing life. Each roller bearing application creates individually different requirements for adequate lubrication. To assist in selecting the lubricant and lubrication method, the following information is furnished as a guide. Generally, the assistance of a qualified engineering representative from a lubricant company should be enlisted. If specific recommendations are required for a particular application, consult the ROLLWAY engineering department.

## Lubricants are used:

a. To reduce friction
b. To prevent wear
c. To prevent adhesion
d. To aid in distributing the load
e. To cool the moving elements
f. To prevent corrosion

Adequate lubrication is necessary in the rolling-contact areas, on contacts between roller and retainer, on contacts between the roller end and flange and on other areas where sliding takes place. Lubrication is required to prevent galling, adhesion, wear, corrosion, scuffing, welding and pitting. Of primary importance is adequate lubrication of the roller (Hertzian) contacts to avoid reduction of bearing fatigue life. These heavily loaded areas between the rollers and raceways impose the most critical requirement on the lubricant and its properties.

Lubricants of too low an initial viscosity or those too sensitive to temperature changes may induce shallow spalls under conditions of high slip (as in misalignment) and may induce plastic flow of the contacting surfaces.

Lubricants are often limited by their ability:
a. To replenish themselves
b. To dissipate frictional heat
c. To resist high environmental temperatures
d. To remain stable under operating conditions

One important purpose of a lubricant is to prevent corrosion of the bearing surfaces engaged in rolling (Hertzian) contact. Many applications involve environments which allow water to accumulate in the bearing cavity. Whether from direct intake or condensation, moisture is detrimental and a lubricant must be selected to disperse the water or to prevent its attack on the metal since corrosion drastically reduces bearing life. Applications involving heavy loads and high operating temperatures also require careful approaches. Here extreme pressure (EP) lubricants should be used. High shaft speeds generally dictate lubricant selection based on the need for cooling, the suppression of churning or aeration of conventional lubricant and, most important of all, the inherent speed limitations of certain bearing types.

## LUBRICATION RECOMMENDATIONS...

It has been ROLLWAY Bearings policy to not recommend any specific lubricant for a given application but instead to recommend the required viscosity of the lubricant at operating temperature to provide adequate lubrication. Below are the recommended viscosities by product type:

Product<br>Cylindrical Radial Roller Bearing<br>Cylindrical Thrust Bearing<br>Tapered Thrust Bearing<br>Tandem Thrust Bearing

Viscosity @ Operating Temperature
110 SSU
125 SSU
160 SSU
160 SSU

## OIL LUBRICATION

Oil lubrication is normally used when speeds and temperatures are high or when it is desired to have a central oil supply for the machine as a whole. Cooled oil is sometimes circulated through the bearing to carry off excess heat resulting from high speeds heavy loads. Oil for anti-friction bearing lubrication should be well refined with high film strength, good resistance to oxidation and good corrosion protection. Anti-oxidation additives are generally acceptable but are of significance only at higher operating temperatures (over $185^{\circ} \mathrm{F}$ ). Anti-corrosion additives are always desirable.

## 1.Lubricating Oils

Lubrication oils are marketed with additives developed for particular applications. It is advisable to consult the engineering representative of a reputable lubricant company on the proper selection for the conditions under consideration.

ROLLWAL

## 1. Lubricating Oils (Continued)

The following are the most common types of additives:
a. Oxidation inhibitor.
b. Viscosity index improver.
c. Defoaming agent.
d. Rust inhibitor.
e. Boundary lubrication improver.
f. Detergent-dispersant.
g. Pour-point depressant.

Some additives are not stable over the entire temperature and shear-rate ranges considered acceptable for straight mineral oils. Additive oils must be carefully monitored to ensure that they are not continued in service after their principal capabilities have been diminished or depleted. The action of the detergent-dispersant additives (used to reduce and control degradation products which would otherwise deposit on the operating of parts and oil cavity walls) may cause an accelerated deposition rate of foaming when they have been degenerated by temperature or contamination. The ingestion of water by condensation or leakage can cause markedly harmful effects. Viscosity index improvers serve to modify oils by reducing their change in viscosity over the operating temperature range. These materials may be used to improve a heavy or light oil. However, the original stock may revert to its natural state when the additive has depleted or been degraded by exposure to high temperatures or shear rates normally encountered in the load zones of bearings. In heavy duty installations, it is advisable to select a heavier or a more highly refined oil.

## 2. Applications of Lubricating Oils

Many oil selections result in excessive operating temperatures due to high initial viscosity which raises friction. Generally, the lightest weight oil capable of carrying the maximum load should be used. In many mechanisms, the thicker fluid may increase friction losses sufficiently to lower the operating viscosity into the range provided by an initially lighter fluid. Improved cooling, accomplished by increasing the oil flow, can improve the fluid properties in the load zone.

## 3. Oil Lubrication Systems

The lubrication system must provide each roller bearing with a uniform, continuous supply of clean oil and must satisfy the cooling requirement of the bearing. Oil lubrication systems are also designed to meet the following needs:
a. Adaptability to function over the range of variables encountered in the operating regime.
b. Reliability in a given operating environment and over the length of the normal maintenance periods.
c. Maintainability.
d. Over-all ability to meet the requirements of the system application.
e. Relative cost when compared to the cost of machine or application.

The table below provides a list of commonly used lubrication systems and shows some of the significant features that must be considered in their design and selection for roller bearing applications.

| Lubrication System | Initial Cost | Required Maintenance | Oil Flow | Cooling | Reliability | Sensitivity to Environmental Changes | Sealing Requirements |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Manual | Low | High | Variable and dependent on worker for continuity | Minimal and variable | Poor | Highly adaptable | Not Significant |
| Drip Feed | Low | Contingent upon type of service and location of lubrication points | May vary with time | Low | Average | May be affected by temperature variations | Not Significant |
| Splash | Dependent on design | Negligible | Dependent upon maintenance of oil level in housing | Fair | High | Sensitive to low temperature May accumulate moisture due to condensation | Generally critical |
| Wick Feed | Low to Medium | Medium | Uniform, filtered, continuous | Negligible | High, if wick is maintained | Sensitive to low temperature | Not Significant |
| Pressure Circulating System | High | Medium | Controlled and continuous Adding filtration ensures clean oil supply | Excellent, can include heat exchanger | High | May accumulate moisture due to condensation | Important |
| Air-Oil Mist | High | Medium | Positive, automatic delivery of regulated oil quantity, free of contamination | Excellent | High | Sensitive to low temperature | Important |

## GREASE LUBRICATION

Rolling contact bearings are often grease lubricated because grease is easier to retain in the housing over a longer period than oil and grease acts, to some extent, as a seal against the entry of dirt and other contaminates into the bearing.
In bearing applications, care must be taken not to overfill the cavity. The bearing should have a practical quantity of grease worked into it, with the rolling elements thoroughly coated and the retainer covered, but the housing should be no more than $75 \%$ full; with soft grease, no more than $50 \%$. Excessive packing is indicated by overheating, churning, aerating, and eventual purging with final failure due to insufficient lubrication. In grease lubrication, never add more than is actually required.

Grease is usually not a suitable lubricant for Dn factors over 300,000 (bore in mm times speed in rpm). For temperatures over $210^{\circ} \mathrm{F}$, the grease renewal periods should be very short.

Normally, grease should not be allowed to remain in a bearing if any of the following are found at inspection:
a. The oil content is less than $50 \%$.
b. The corrosion protection properties are diminished.
c. The acidity has changed.
d. Liquid or solid contaminants are present.
e. Liquification has started.
f. Significant color change.

## 1. Lubricating Greases

Greases are applied where fluid lubricants cannot be used because of the difficulty of retention, re-lubrication or because of the danger of churning. Greases are usually made by using soap or inorganic compounds to thicken petroleum or synthetic oils. The thickener is used to immobilize the oil, acting as a reservoir to release the oil at a slow rate. Though the thickener may have lubrication properties itself, the oil bleeding from the bulk of the grease is felt to be the determining factor. When the oil has depleted to approximately $50 \%$ of the total weight of the grease, the lubricating ability of the grease becomes doubtful.

## 2. Grease Consistency Classifications

Greases are divided into grades by the NLGI (National Lubricating Grease Institute), ranging from 0, the softest, up through 6, the stiffest. The grade is determined by testing a penetrometer, measuring the depth of penetration of a specific weighted cone. Most greases have thixotropic properties (they soften with working) and, as such, must be considered for their worked properties rather than in the "as-received" condition. Conversely, many greases are found to stiffen when exposed to high shear rates in automatic grease dispensing equipment.
To limit shock loads and settling, grease-lubricated bearing housings should have dividers to keep the bulk of the grease in place. Grease lubrication depends on a relatively small amount of mobile lubricant (the oil bled out of the bulk) to replenish that thrown out of the bearing during operation. If the space between the bulk of the grease and the bearing is too large, then a long delay (determined by the grease bleed rate and its temperature) will be encountered before lubricant in the bearing is resupplied. This delay may effect bearing life.
Grease is normally applied with the material in the cavity contacting the bearing in the lower quadrant for bearings mounted on horizontal shafts. The initial action of the bearing when rotated is to purge itself of excess grease and to clear a path for bleed oil to enter the bearing. Therefore, greases selected are often of grade 2 or 3 consistency, referred to as the "channeling" variety.

## 3. Types of Grease

Most commonly used greases utilize lithium soaps or sodiums and some may use the modified-clay thickeners. In all-around use, the lithium soap greases are employed for moderate temperature applications (up to $225^{\circ} \mathrm{F}$ ) while a number of sodium soap greases perform well up to $285^{\circ} \mathrm{F}$.
Major lubricant suppliers offer different formulations for these temperature ranges, making it advisable for the user to consult with the suppliers' engineering representatives. Also, the volatility of the oil used affects the useful life of the bulk grease applied to the bearing cavity and the viscosity of the oil affects the load-carrying capacity of the grease. Both must be considered in the selection.
For use in roller bearings, grease must have the following properties:
a. Freedom from chemically or mechanically active ingredients, such as disassociated metals or oxides, and similar mineral or solid contaminants.
b. A very slow change in consistency, such as thickening, separation of oil, evaporation or hardening during operation.
c. A drop-point and melting point considerably higher than the operating temperatures.

## 4. Temperature Effects on Grease Life

Operating temperatures must be carefully considered and controlled to ensure adequate grease and bearing life. Grease is subject to the general rule that, above a critical temperature, each $15^{\circ} \mathrm{F}$ of rise in temperature cuts the oxidation life of the lubricant in half.

## 5. Relubricating with Grease

Where bearings are inaccessible but sealed, grease may be replenished providing a re-lubrication method has been properly developed. A basic procedure similar to the following is recommended.
a. Use the identical original grease.
b. Clean the fittings to prevent contamination of the cavity.
c. Remove the cap and the drain plug.
d. Clean out the drain.
e. Weigh the grease gun.
f. Apply the specified quantity or fill until grease comes out the drain.
g. Weigh the grease gun again to verify amount applied.
h. Operate with the drain open long enough to permit purging and ensure safe temperature rise.

Samples of the purged material should be inspected to check for lubricant oxidation and for foreign material (that could be contamination) and for bearing particles indicative of incipient failure.
Cleaning and re-packing may be done by hand in designs where the bearing is accessible. When replacing the grease, it should be forced between the rollers with fingers, dismantling the bearing, if convenient. The available space inside the bearing should be filled completely and the bearing should then be turned slowly by hand. Any grease thrown out should be wiped off. The space on each side of the bearing in the housing should not be more than $50 \%$ filled. Too much grease will result in considerable churning, high bearing temperatures and the possibility of early failure.

To estimate conservative grease renewal periods, the equation below, may be used. Final determination of the grease renewal period for a specific application must be made experimentally. The assistance of a technical representative from a reliable lubricant company should be sought.

$$
I_{\mathrm{ubb}}=\frac{1.67_{y \nmid y 2 y 34} \times 10^{7}}{n \times \mathrm{B}^{0.5}}
$$

Where $I_{\text {ub }}=$ Lubrication interval-hours
$y_{1}=1.5$ for bearing with one piece broached, two piece drilled or segmented retainer
1.0 for bearing with stamped steel retainer
0.8 for full roller type
$y_{2}=1.5$ for bearing with bore $<50 \mathrm{~mm}$
1.0 for bore 50 mm to $<200 \mathrm{~mm}$
0.5 for bore > 200 mm
$y_{3}=1.5$ for operating temperature $<130^{\circ} \mathrm{F}$
1.0 for $130^{\circ} \mathrm{F}<=$ operating temperature $<=200^{\circ} \mathrm{F}$
0.5 for operating temperature $>200^{\circ} \mathrm{F}$
$y_{4}=1.5$ for operating speed < 500 rpm
1.0 for 500 rpm <= operating speed < 3600rpm
0.5 for operating speed > 3600 rpm
$n=$ Bearing speed -rpm
$B=$ Bearing bore -mm

The following factors must be considered in determining the grease lubrication interval:
a. The formula is recommended as a general guide only.
b. The formula is valid up to the following maximum speeds:

1" shaft diameter - 8600 rpm
2" shaft diameter - 4300 rpm
3" shaft diameter - 2850 rpm
4 " shaft diameter - 2150 rpm
5 " shaft diameter - 1725 rpm
6 " shaft diameter - 1425 rpm
c. For lubrication interval where speeds are in excess of those indicated in (b), consult the ROLLWAY engineering department.

Normally, commercial grease should not be allowed to remain in a bearing for longer than 48 months. If the service is very light and temperatures are low, 60 months is the maximum, regardless of the number of hours of operation during that period, since oxidation and separation of the oil form the soap continue whether or not the bearing is in operation.

## STANDARD TERMS AND CONDITIONS OF SALE (March 19, 1999)

These Terms and Conditions, the attendant quotation or acknowledgment and all documents incorporated by specific reference therein, will be the complete and exclusive statement of the terms of the agreement governing the sale of goods ("Goods") by Emerson Power Transmission Corporation and its divisions and subsidiaries ("Seller") to Customer ("Buyer"). Buyer's acceptance of the Goods will manifest Buyer's assent to these Terms and Conditions. If these Terms and Conditions differ in any way from the terms and conditions of Buyer's order, or other documentation, this document will be construed as a counteroffer and will not be deemed an acceptance of Buyer's terms and conditions which conflict herewith.

1. PRICES: Unless otherwise specified in writing by Seller, Seller's price for the goods shall remain in effect for thirty (30) days after the date of Seller's quotation or acknowledgment of Buyer's order for the Goods, whichever occurs first, provided an unconditional, complete authorization for the immediate shipment of the Goods is received and accepted by Seller within such time period. If such authorization is not received by Seller within such thirty (30) day period, Seller shall have the right to change the price for the Good to Seller's price for the Goods at the time of shipment.
2. TAXES: Any tax or governmental charge or increase in same hereafter becoming effective increasing the cost to Seller of producing, selling or delivering the Goods or of procuring material used therein, and any tax now in effect or increase in same payable by the Seller because of the manufacture, sale or delivery of the Goods, may at Seller's option, be added to the price.
3. TERMS OF PAYMENT: Subject to the approval of Seller's Credit Department, terms are net thirty (30) days from date of Seller's invoice in U.S. currency. If any payment owed to Seller is not paid when due, it shall bear interest, at a rate to be determined by Seller, which shall not exceed the maximum rate permitted by law, from the date on which it is due until it is paid. Seller shall have the right, among other remedies, either to terminate the Agreement or to suspend further performance under this and/or other agreements with Buyer in the event Buyer fails to make any payment when due. Buyer shall be liable for all expenses, including attorneys' fees, relating to the collection of past due amounts.
4. SHIPMENT AND DELIVERY: Shipments are made F.O.B. Seller's shipping point. Any claims for shortages or damages suffered in transit shall be submitted by the Buyer directly to the carrier. While Seller will use all reasonable commercial efforts to maintain the delivery date acknowledged or quoted by Seller, all shipping dates are approximate. Seller reserves the right to make partial shipments and to segregate "specials" and made-to-order Goods from normal stock Goods. Seller shall not be bound to tender delivery of any Goods for which Buyer has not provided shipping instructions.
5. QUANTITY: Buyer agrees to accept overruns of up to ten percent ( $10 \%$ ) of the order on "made-to-order" Goods, including parts. Any such additional items shall be priced at the price per item charged for the specific quantity ordered.
6. LIMITED WARRANTY: Subject to the limitations of Section 7, Seller warrants that the Goods will be free from defects in material and workmanship under normal use, service and maintenance for a period of one year (unless otherwise specified by Seller in writing) from the date of shipment of the Goods by Seller. THIS IS THE SOLE AND EXCLUSIVE WARRANTY GIVEN BY SELLER WITH RESPECT TO THE GOODS AND IS IN LIEU OF AND EXCLUDES ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, ARISING BY OPERATION OF LAW OR OTHERWISE, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE WHETHER OR NOT THE PURPOSE OR USE HAS BEEN DISCLOSED TO SELLER IN SPECIFICATIONS, DRAWINGS OR OTHERWISE, AND WHETHER OR NOT SELLER'S PRODUCTS ARE SPECIFICALLY DESIGNED AND/OR MANUFACTURED BY SELLER FOR BUYER'S USE OR PURPOSE.
This warranty does not extend to any losses or damages due to misuse, accident, abuse, neglect, normal wear and tear, unauthorized modification or alteration, use beyond rated capacity, or improper installation, maintenance or application. To the extent that Buyer or its agents has supplied specifications, information, representation of operating conditions or other data to Seller in the selection or design of the Goods and the preparation of Seller's quotation, and in the event that actual operating conditions or other conditions differ from those represented by Buyer, any warranties or other provisions contained herein which are affected by such conditions shall be null and void. If within thirty (30) days after Buyer's discovery of any warranty defects within the warranty period, Buyer notifies Seller thereof in writing, Seller shall, at its option, repair or replace F.O.B. point of manufacture, or refund the purchase price for, that portion of the goods found by Seller to be defective. Failure by Buyer to give such written notice within the applicable time period shall be deemed an absolute and unconditional waiver of Buyer's claim for such defects. Goods repaired or replaced during the warranty period shall be covered by the foregoing warranty for the remainder of the original warranty period or ninety (90) days, whichever is longer. Buyer assumes all other responsibility for any loss, damage, or injury to persons or property arising out of, connected with, or resulting from the use of Goods, either alone or in combination with other products/components.
SECTIONS 6 AND 7 APPLY TO ANY ENTITY OR PERSON WHO MAY BUY, ACQUIRE OR USE SELLER'S GOODS, INCLUDING ANY ENTITY OR PERSON WHO BUYS THE GOODS FROM SELLER'S DISTRIBUTOR AND SUCH ENTITY OR PERSON SHALL BE BOUND BY THE LIMITATIONS THEREIN.
7. LIMITATION OF REMEDY AND LIABILITY: THE SOLE AND EXCLUSIVE REMEDY FOR BREACH OF ANY WARRANTY HEREUNDER (OTHER THAN THE WARRANTY PROVIDED UNDER SECTION 13) SHALL BE LIMITED TO REPAIR, REPLACEMENT OR REFUND OF THE PURCHASE PRICE UNDER SECTION 6. SELLER SHALL NOT BE LIABLE FOR DAMAGES CAUSED BY DELAY IN PERFORMANCE AND IN NO EVENT, REGARDLESS OF THE FORM OF THE CLAIM OR CAUSE OF ACTION (WHETHER BASED IN CONTRACT, INFRINGEMENT, NEGLIGENCE, STRICT LIABILITY, OTHER TORT OR OTHERWISE), SHALL SELLER'S LIABILITY TO BUYER AND/OR ITS CUSTOMERS EXCEED THE PRICE TO BUYER OF THE SPECIFIC GOODS PROVIDED BY SELLER GIVING RISE TO THE CLAIM OR CAUSE OF ACTION. BUYER AGREES THAT IN NO EVENT SHALL SELLER'S LIABILITY TO BUYER AND/OR ITS CUSTOMERS EXTEND TO INCLUDE INCIDENTAL, CONSEQUENTIAL OR PUNITIVE DAMAGES. THE TERM "CONSEQUENTIAL DAMAGES" SHALL INCLUDE, BUT NOT BE LIMITED TO, LOSS OF

ANTICIPATED PROFITS, LOSS OF USE, LOSS OF REVENUE, COST OF CAPITAL AND DAMAGE OR LOSS OF OTHER PROPERTY OR EQUIPMENT.
It is expressly understood that any technical advice furnished by Seller with respect to the use of the Goods is given without charge, and Seller assumes no obligation or liability for the advice given, or results obtained, all such advice being given and accepted at Buyer's risk.
GOODS AND/OR SERVICES SOLD HEREUNDER ARE NOT FOR USE IN ANY NUCLEAR AND RELATED APPLICATIONS. Buyer accepts goods and/or services with the foregoing understanding, agrees to communicate the same in writing to any subsequent purchaser or users and to defend, indemnify and hold harmless Seller from any claims, losses, suits, judgments and damages, including incidental and consequential damages, arising from such use, whether the cause of action be based in tort, contract or otherwise, including allegations that the Seller's liability is based on negligence or strict liability.
8. EXCUSE OF PERFORMANCE: Seller shall not be liable for delays in performance or for non-performance due to acts of God, acts of Buyer, war, riot, fire, flood, other severe weather, sabotage, or epidemics; strikes or labor disturbances; governmental requests, restrictions, laws, regulations, orders or actions; unavailability of or delays in transportation; default of suppliers; or unforeseen circumstances or any events or causes beyond Seller's reasonable control. Deliveries may be suspended for an appropriate period of time as a result of the foregoing. If Seller determines that its ability to supply the total demand for the Goods, or to obtain material used directly or indirectly in the manufacture of the Goods, is hindered, limited or made impracticable due to causes addressed in this Section 8, Seller may allocate its available supply of the Goods or such material (without obligation to acquire other supplies of any such Goods or material) among itself and its purchasers on such basis as Seller determines to be equitable without liability for any failure of performance which may result therefrom. Deliveries suspended or not made by reason of this section may be canceled by Seller upon notice to Buyer without liability, but the balance of the agreement shall otherwise remain unaffected.
9. CANCELLATION: The Buyer may cancel orders only upon written notice and upon payment to Seller of cancellation charges which include, among other things, all costs and expenses incurred and commitments made by the Seller and a reasonable profit thereon.
10. CHANGES: Buyer may request changes or additions to the Goods consistent with Seller's specifications and criteria. In the event such changes or additions are accepted by Seller, Seller may revise the price and delivery schedule. Seller reserves the right to change designs and specifications for the Goods without prior notice to Buyer, except with respect to Goods being made-to-order for Buyer.
11. TOOLING: Tool, die, and pattern charges, if any, are in addition to the price of the Goods and are due and payable upon completion of the tooling. All such tools, dies and patterns shall be and remain the property of Seller. Charges for tools, dies, and patterns do not convey to Buyer, title, ownership interests in, or rights to possession or removal, nor prevent their use by Seller for other purchasers, except as otherwise expressly provided by Seller and Buyer in writing with reference to this provision.
12. ASSIGNMENT: Buyer shall not assign its rights or delegate its duties hereunder or any interest therein or any rights hereunder without the prior written consent of the Seller, and any such assignment, without such consent, shall be void.
13. PATENTS AND COPYRIGHTS: Subject to Section 7, Seller warrants that the Goods sold, except as are made specifically for Buyer according to Buyer's specifications, do not infringe any valid U.S. patent or copyright in existence as of the date of delivery. This warranty is given upon the condition that Buyer promptly notify Seller of any claim or suit involving Buyer in which such infringement is alleged, and, that Buyer cooperate fully with Seller and permit Seller to control completely the defense or compromise of any such allegation of infringement. Seller's warranty as to use only applies to infringements arising solely out of the inherent operation (i) of such Goods, or (ii) of any combination of Goods in a system designed by Seller. In the event such Goods, singularly or in combination, are held to infringe a U.S. patent or copyright in such suit, and the use of such Goods is enjoined, or in the case of a compromise by Seller, Seller shall have the right, at its option and expense, to procure for Buyer the right to continue using such Goods, or replace them with non-infringing Goods; or modify same to become non-infringing; or grant Buyer a credit for the depreciated value of such Goods and accept return of them.
14. MISCELLANEOUS: These terms and conditions set forth the entire understanding and agreement between Seller and Buyer, and supersede all other communications, negotiations and prior oral or written statements regarding the subject matter of these terms and conditions. No change, modification, rescission, discharge, abandonment, or waiver of these terms and conditions of Sale shall be binding upon the Seller unless made in writing and signed on its behalf by an officer of the Seller. No conditions, usage or trade, course of dealing or performance, understanding or agreement purporting to modify, vary, explain, or supplement these Terms and Conditions shall be binding unless hereafter made in writing and signed by the party to be bound, and no modification shall be affected by the acceptance of purchase orders or shipping instruction forms containing terms at variance with or in addition to those set forth herein. No waiver by Seller with respect to any breach or default or any right or remedy and no course of dealing, shall be deemed to constitute a continuing waiver of any other breach or default or of any other right or remedy, unless such waiver be expressed in writing and signed by the party to be bound. Seller is not responsible for typographical or clerical errors made in any quotation, orders or publications. All such errors are subject to correction. The validity, performance, and all other matters relating to the interpretation and effect of this contract shall be governed by the law of the state of New York.


[^0]:    Notes:

    1. Some configurations may not be in production, check for availability
    2. Actual retainer options may vary, check for retainer design availability
    3. Corners rs \& rh are the maximum shaft and housing fillet radius that can be cleared
[^1]:    * Dimension Fx2 must be added to bearing O.D. for determining overall O.D. on WCT type.
    $F=.41$ inch (approx.) for all sizes.

